

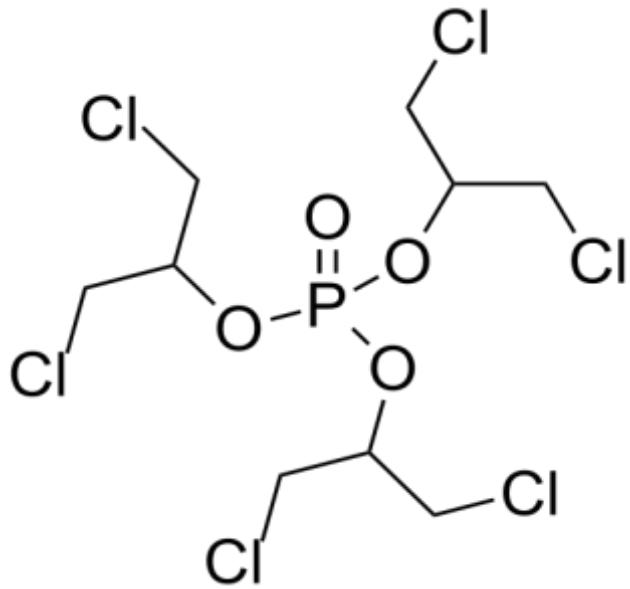
Transcriptomic and metabolomic approaches to investigate molecular responses of human exposure to flame retardants

Progress to date

ESR 11: Jinkang Zhang

Supervisors: Prof. Kevin Chipman & Prof. Mark Viant

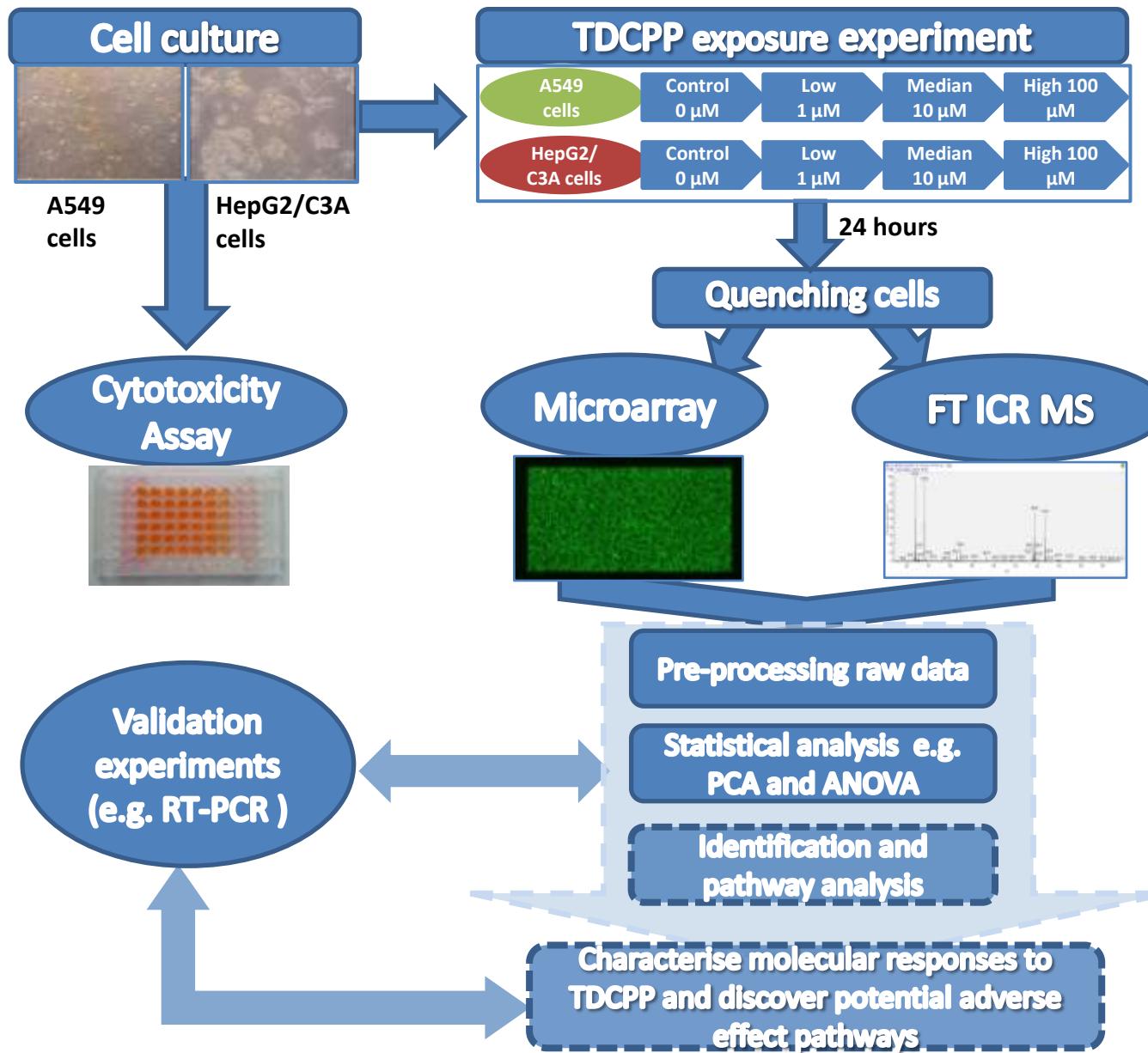
School of Biosciences, University of Birmingham, UK


Outline

- 1) Previous results of omics study of cells molecular response to HBCD – manuscript in preparation
- 2) Recent progress: omics study of cells molecular response to TDCPP
- 3) Next 5 months plan

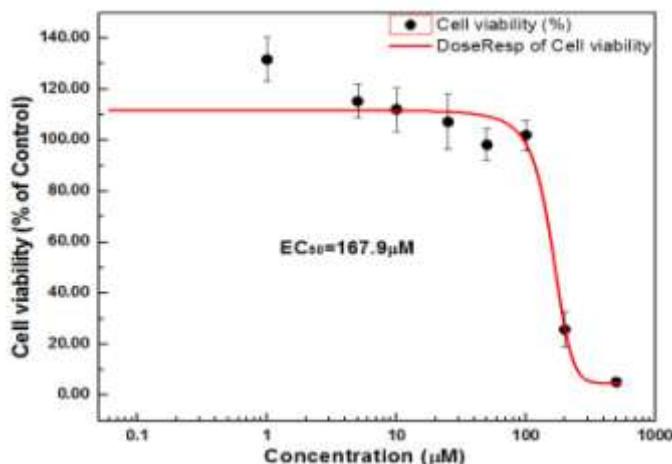
Summary of HBCD study

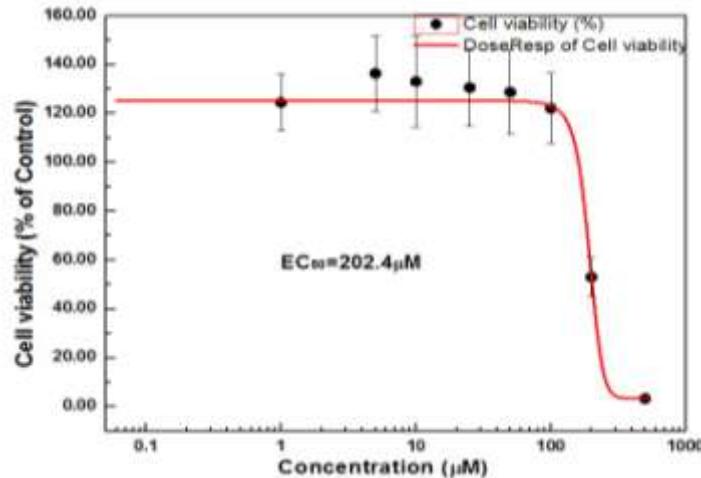
Cell type	Methodology	HBCD (0-2μM or 0-4μM)		Positive control	
A549	Transcriptomics	24h; n=6 _{rep.} *5 _{group} 			confirmed by Real time PCR
	Metabolomics (MS & NMR _polar)	24h; n=8 _{rep.} *5 _{group} 			
HepG2/C3A	Metabolomic s (MS_polar)	24h; n=6 _{rep.} *2 _{group} 	72h; n=6 		
	Transcriptomics	24h; n=6 _{rep.} *2 _{group} 		10μM DMBA 24h; n=6 	confirmed by Real time PCR
A549 HepG2/C3A		<u>HBCD levels has been measured after exposure experiments . (~100,000ng/g cell pellets(wet weight))</u>			
Conclusion		<u>Two cell lines have few molecular response after exposure to HBCD (at up to 4μM) in this study.</u>			


TDCPP

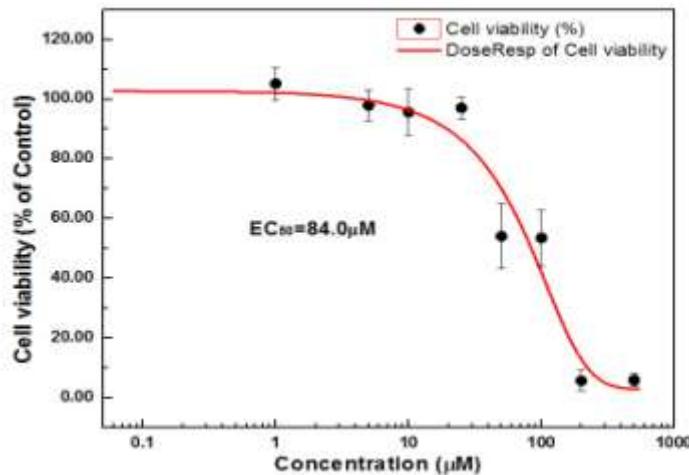
Chemical Structure of Tris (1,3-dichloro-2-propyl) phosphate (TDCPP)

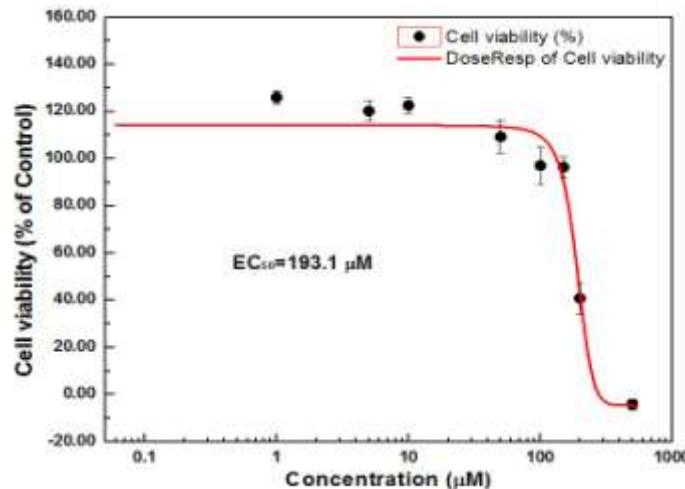
- TDCPP is mainly used as **additive flame retardants** adding into polyurethane foam.
- TDCPP has been detected in different samples including **indoor air and house dust** (van der Veen and de Boer 2012, Brommer et al., 2012, Allen et al., 2013) which may be an important source of human exposure to TDCPP (Meeker et al., 2013).
- **Limited studies** suggest that TDCPP may be **carcinogenic, neurotoxic, endocrine-disruptive** and/or **reproductive toxicants** (Andresen et al., 2004; Dishaw et al. 2011; Liu et al. 2012; Liu et al. 2013; van der Veen and de Boer 2012).
- **More research** is necessary to determine potential health risks and understand mechanisms of potential adverse effects resulting from exposure to TDCPP.


Experimental Design (1)

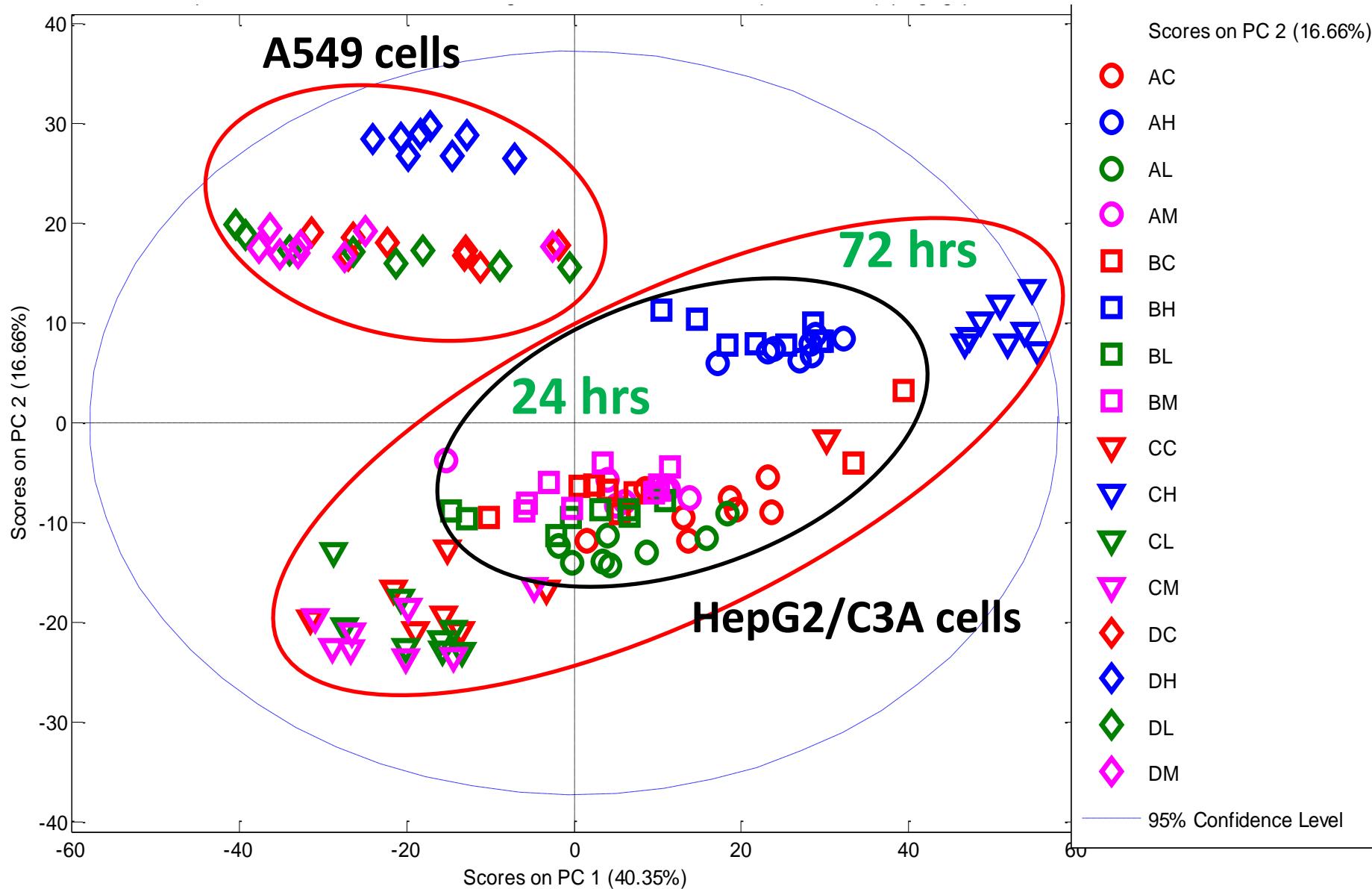

Experimental Design (2)

Group (Media type/exposure time/Cell lines)	High Dose (100 μ M)	Medium Dose (10 μ M)	Low Dose (1 μ M)	Solvent Control
A + FBS; 24h; HepG2/C3A	8 + 4 replicates	8 + 4	8	8 + 4
B -FBS; 24h; HepG2/C3A	8	8	8	8
C + FBS; 72h; HepG2/C3A	8	8	8	8
D + FBS; 24h; A549	8+ 4	8 + 4	8	8 + 4

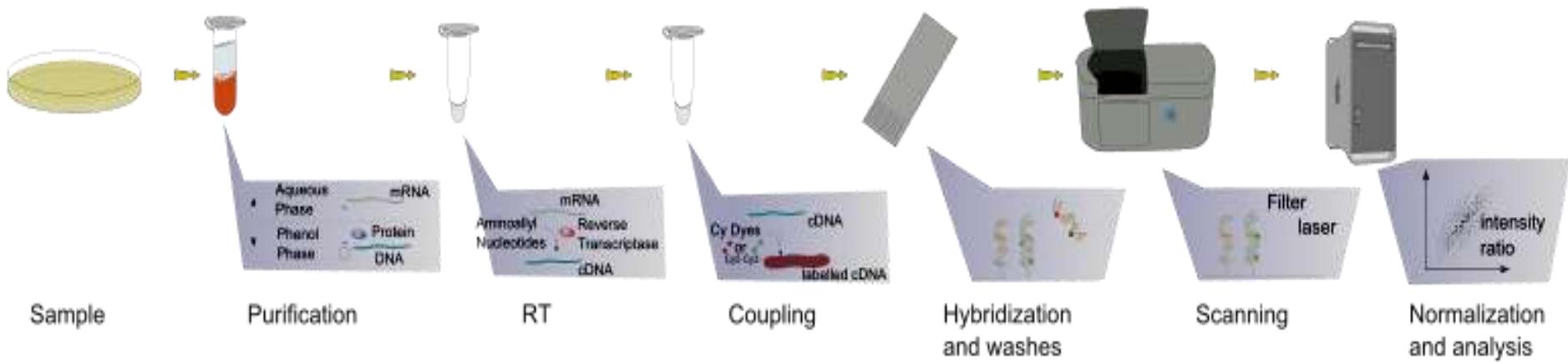

Cytotoxicity Screening (CCK-8 Assay)


HepG2/C3A+FBS_24h

HepG2/C3A-FBS_24h

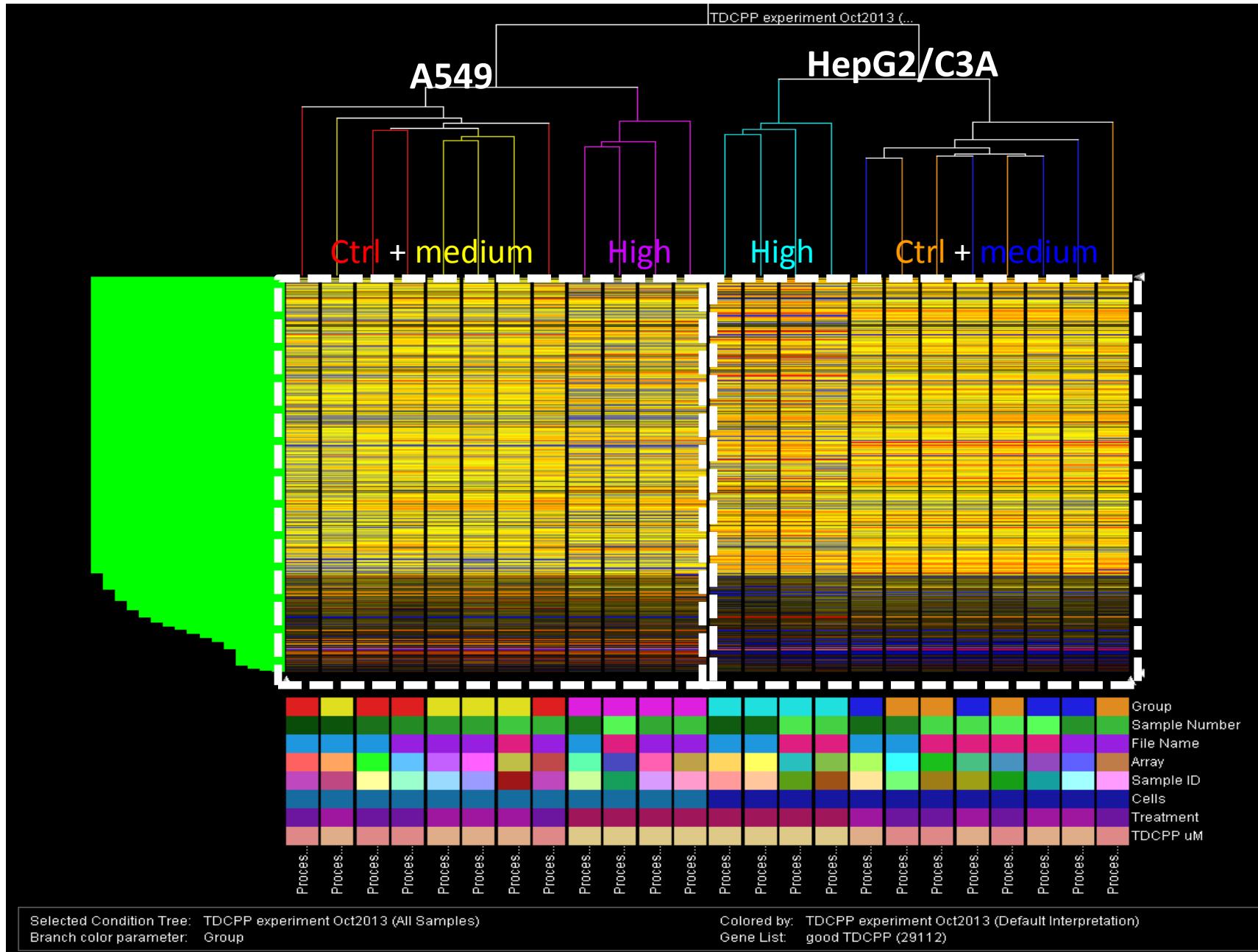


HepG2/C3A+FBS_72h

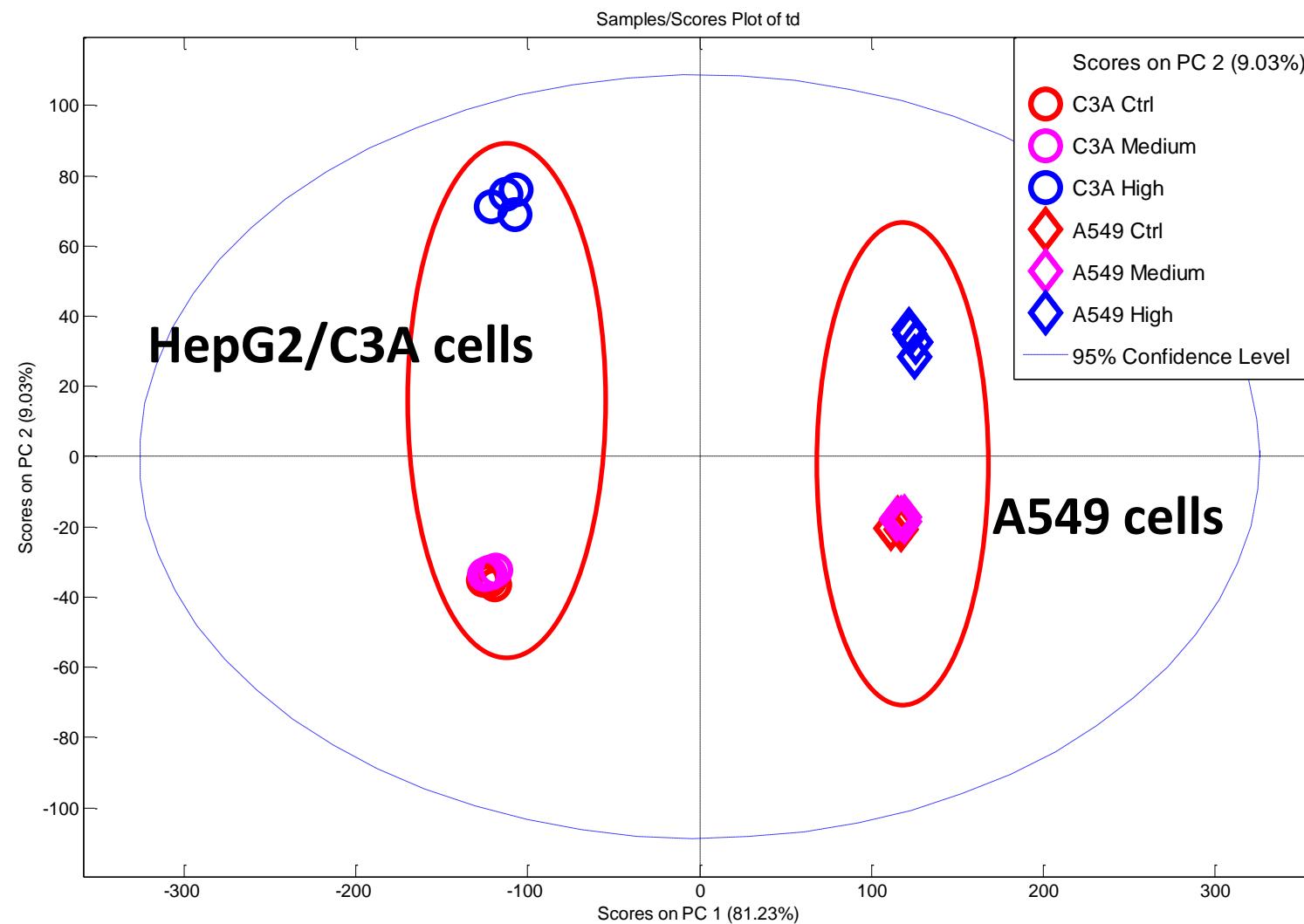


A549+FBS_24h

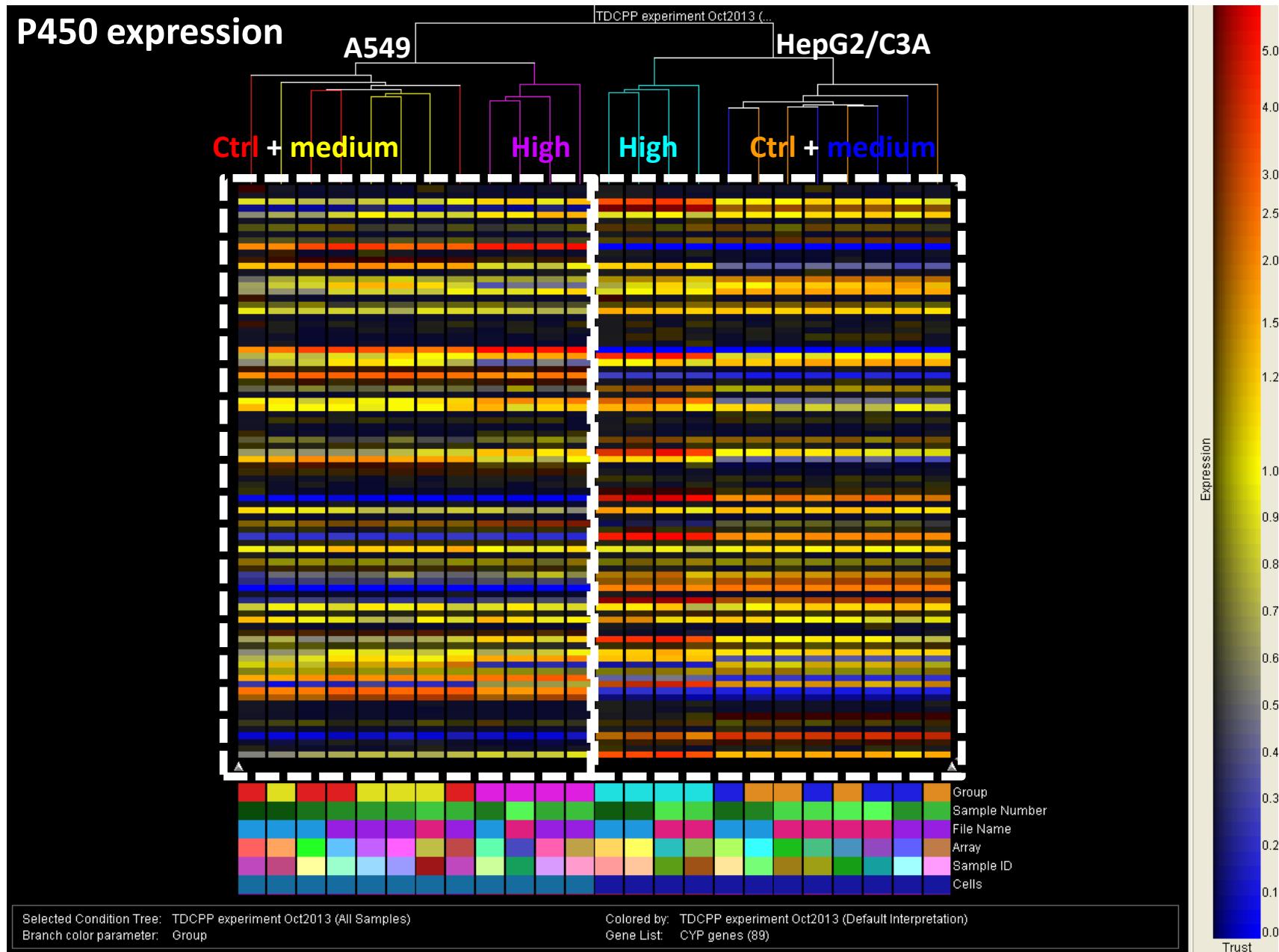
Principal component analysis (PCA) of positive MS peaks dataset

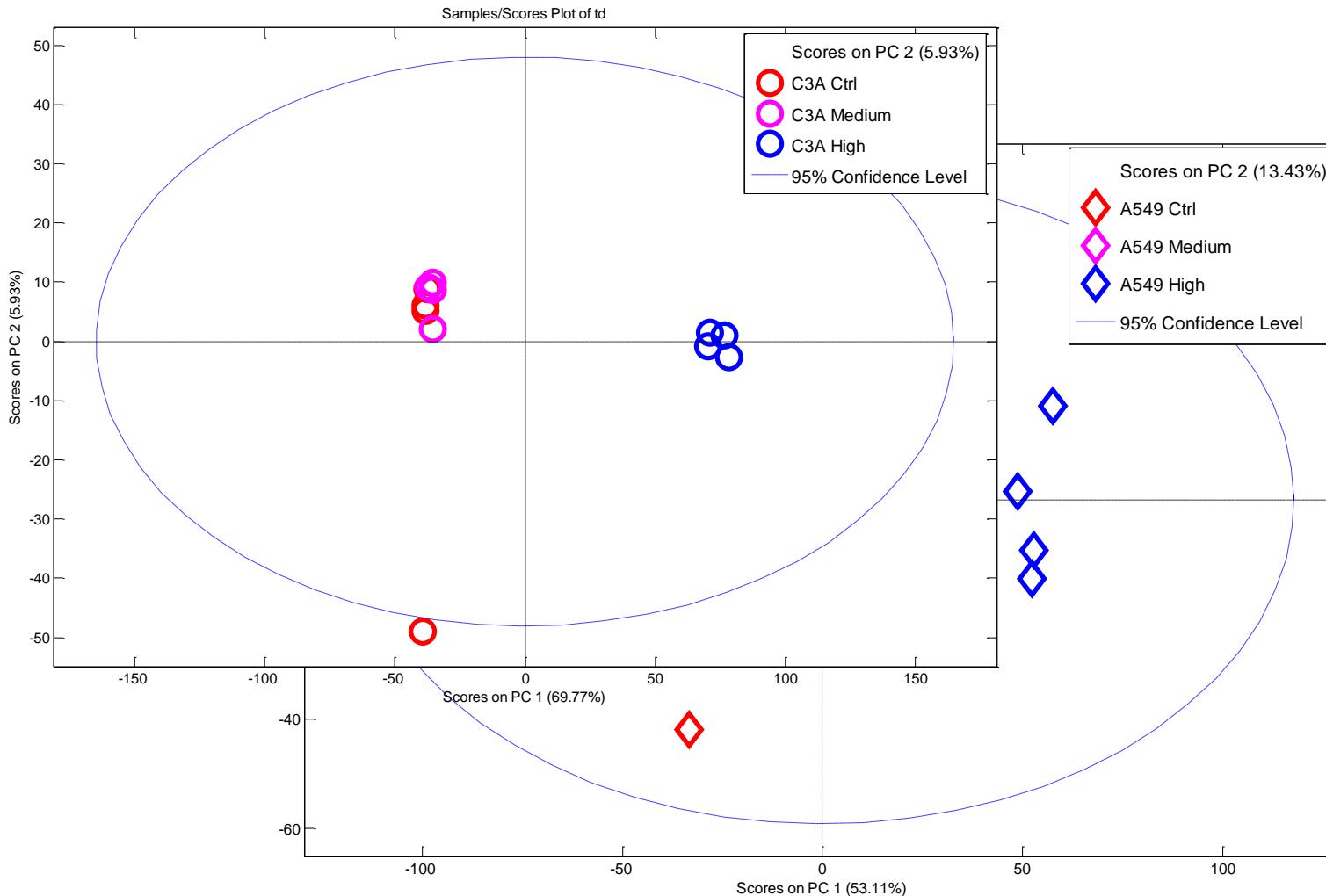


Microarray



Agilent SurePrint G3 Human Gene Expression 8x60K v2


Cluster Analysis of all microarray data


PCA of all normalised microarray dataset (1)

Cluster Analysis of cytochrome P450 genes expression

PCA of normalised microarray dataset (2)

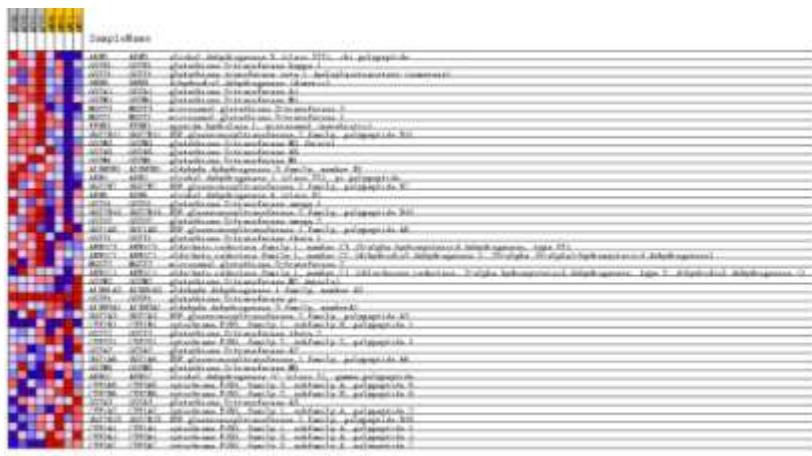
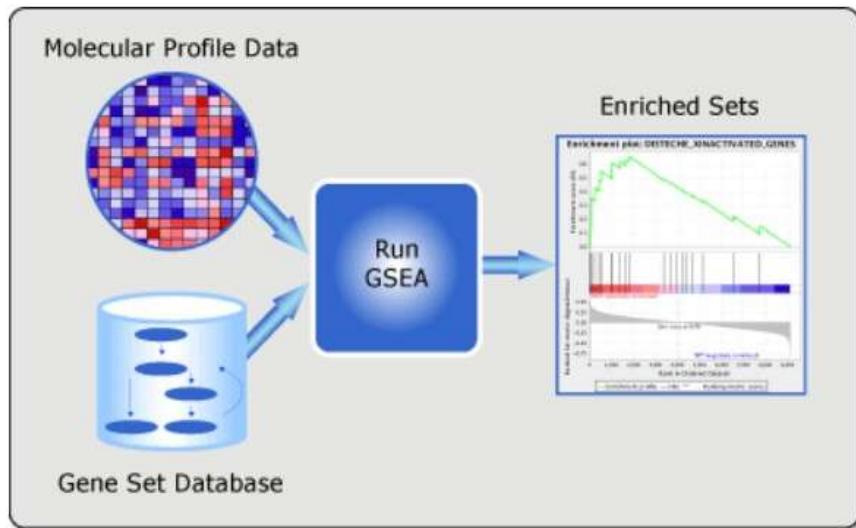
Significance Analysis for Microarray (SAM) (in MeV)

<http://www.tm4.org/mev.html>

pick out significant genes based on differential expression between sets of samples. (Chu et al. 2002)

SAM	Significant genes	False Discovery Rate (FDR) %	Delta value
A549	4319	< 0.5	0.321
	2462	< 0.1	0.434
C3A	5551	< 0.5	0.156
	3462	< 0.1	0.208

Statistical analysis



One way ANOVA (following adjusted Bonferroni correction)	significant genes	
A549	445	
C3A	3472	

t- test	Significant genes		
	Ctrl vs. Medium	Ctrl vs. High	Medium vs. High
A549	0	67	132
C3A	0	922	871

Gene set enrichment analysis (GSEA)

<http://www.broadinstitute.org/gsea/index.jsp>

is a computational method that determines whether an *a priori* defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). (Jiang and Gentleman 2007)

GSEA Report for Dataset good annotations TDCPP_C3A

Enrichment in phenotype: 0 (4 samples)

- 148 / 167 gene sets are upregulated in phenotype 0
- 34 gene sets are significant at FDR < 25%
- 21 gene sets are significantly enriched at nominal pvalue < 1%
- 33 gene sets are significantly enriched at nominal pvalue < 5%
- [Snapshot](#) of enrichment results
- Detailed [enrichment results](#) in [html](#) format
- Detailed [enrichment results](#) in [excel](#) format (tab delimited text)
- [Guide to interpret results](#)

Enrichment in phenotype: 10 (4 samples)

- 19 / 167 gene sets are upregulated in phenotype 10
- 6 gene sets are significantly enriched at FDR < 25%
- 4 gene sets are significantly enriched at nominal pvalue < 1%
- 7 gene sets are significantly enriched at nominal pvalue < 5%
- [Snapshot](#) of enrichment results
- Detailed [enrichment results](#) in [html](#) format
- Detailed [enrichment results](#) in [excel](#) format (tab delimited text)
- [Guide to interpret results](#)

Dataset details

- The dataset has 29112 native features
- After collapsing features into gene symbols, there are: 16276 genes

Gene set details

- Gene set size filters (min=15, max=500) resulted in filtering out 19 / 166 gene sets
- The remaining 167 gene sets were used in the analysis
- List of [gene sets](#) used and their sizes (restricted to features in the specified dataset)

Number of gene sets significantly enriched in A549 and HepG2/C3A cells

GSEA_A549_TDCPP_Kegg_2k permutation

	gene sets are up regulated in first phenotype	gene sets are significant at FDR < 25%	gene sets are significantly enriched at nominal p value < 1%	gene sets are significantly enriched at nominal p value < 5%	gene sets are up regulated in second phenotype	gene sets are significant at FDR < 25%	gene sets are significantly enriched at nominal p value < 1%	gene sets are significantly enriched at nominal p value < 5%
Ctrl vs. Medium(10 uM)	133 / 167	21	18	22	34 / 167	4	3	4
Ctrl vs. High(100uM)	97 / 167	31	18	29	70 / 167	0	0	4
High vs. Medium	77 / 167	2	2	6	90 / 167	36	17	31

GSEA_C3A_TDCPP_Kegg_2k permutation

	gene sets are up regulated in first phenotype	gene sets are significant at FDR < 25%	gene sets are significantly enriched at nominal p value < 1%	gene sets are significantly enriched at nominal p value < 5%	gene sets are up regulated in second phenotype	gene sets are significant at FDR < 25%	gene sets are significantly enriched at nominal p value < 1%	gene sets are significantly enriched at nominal p value < 5%
Ctrl vs. Medium(10u M)	148 / 167	34	21	33	19 / 167	8	4	7
Ctrl vs. High(100uM)	100 / 167	55	27	43	67/ 167	13	6	14
High vs. Medium	75 / 167	9	7	12	92 / 167	55	24	37

C3A cells_Medium vs. Ctrl

Table: Gene sets enriched in phenotype 10 (4 samples) [plain text format]

	GS Follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX
1	KEGG_CYTOKINE_CYTOKINE_RECEPтор_INTERACTION	Details ...	150	-0.15			1.000	0.000	2061
2	KEGG_NEUROACTIVE_LIGAND_RECEPтор_INTERACTION	Details ...	127	-0.13			1.000	0.000	1185
3	KEGG_RETINOL_METABOLISM	Details ...	36	-0.38	-1.84	0.000	0.024	0.013	969
4	KEGG_LINOLEIC_ACID_METABOLISM	Details ...	17	-0.44	-1.71	0.000	0.041	0.029	2003
5	KEGG_DRUG_METABOLISM_CYTOCHROME_P450	Details ...	45	-0.31	-1.65	0.000	0.045	0.040	1376
6	KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION	Details ...	25	-0.37	-1.59	0.000	0.050	0.054	1645
7	KEGG_TASTE_TRANSDUCTION	Details ...	28	-0.36	-1.57	0.027	0.049	0.063	1606
8	KEGG_ABC_TRANSPORTERS	Details ...	34	-0.32	-1.55	0.035	0.046	0.068	1404
9	KEGG_STEROID BIOSYNTHESIS	Details ...	16	-0.40	-1.48	0.057	0.061	0.101	9853
10	KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450	Details ...	46	-0.28	-1.39	0.037	0.091	0.169	1376
11	KEGG_TRYPTOPHAN_METABOLISM	Details ...	35	-0.25	-1.18	0.150	0.297	0.480	379
12	KEGG_PRIMARY_IMMUNODEFICIENCY	Details ...	25	-0.26	-1.15	0.225	0.323	0.539	926
13	KEGG_ECM_RECEPтор_INTERACTION	Details ...	62	-0.17	-1.01	0.600	0.565	0.776	780
14	KEGG_TYPE_II_DIABETES_MELLITUS	Details ...	38	-0.21	-0.99	0.477	0.576	0.805	12846
15	KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM	Details ...	62	-0.16	-0.93	0.667	0.652	0.858	692
16	KEGG_DILATED_CARDIOMYOPATHY	Details ...	66	-0.18	-0.90	0.750	0.680	0.889	13422
17	KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC	Details ...	56	-0.16	-0.81	0.882	0.801	0.937	536
18	KEGG_ALLOGRAFT_REJECTION	Details ...	19	-0.19	-0.79	0.817	0.785	0.942	1645
19	KEGG_GRAFT_VERSUS_HOST_DISEASE	Details ...	21	-0.18	-0.74	0.899	0.800	0.951	1645

Xenobiotic metabolism by CYPs

	GS Follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX
1	KEGG_PROTEASOME	Details ...	41	0.69	2.00	0.000	0.000	0.001	3408
2	KEGG_DNA_REPLICATION	Details ...	36	0.67	1.90	0.000	0.001	0.002	4077
3	KEGG_PARKINSONS_DISEASE	Details ...	115	0.60	1.87	0.000	0.001	0.003	4638
4	KEGG_MISMATCH_REPAIR	Details ...	23	0.68	1.81	0.000	0.002	0.009	4077
5	KEGG_OXIDATIVE_PHOSPHORYLATION	Details ...	118	0.57	1.77	0.000	0.003	0.016	4668
6	KEGG_SPLICOSOME	Details ...	126	0.57	1.77	0.000	0.003	0.018	4924
7	KEGG_HUNTINGTONS_DISEASE	Details ...	169	0.56	1.76	0.000	0.003	0.022	4638
8	KEGG_ALZHEIMERS_DISEASE	Details ...	147	0.55	1.72	0.000	0.005	0.043	4696
9	KEGG_RIBOSOME	Details ...	87	0.56	1.72	0.000	0.005	0.047	3406
10	KEGG_NUCLEOTIDE_EXCISION_REPAIR	Details ...	43	0.58	1.69	0.000	0.006	0.068	4077
11	KEGG_CELL_CYCLE	Details ...	120	0.54	1.68	0.000	0.007	0.083	5685
12	KEGG_RNA_DEGRADATION	Details ...	55	0.56	1.64	0.000	0.011	0.136	4971
13	KEGG_PYRIMIDINE_METABOLISM	Details ...	90	0.53	1.63	0.000	0.014	0.184	5601
14	KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS	Details ...	100	0.51	1.58	0.000	0.027	0.347	3913
15	KEGG_BASE_EXCISION_REPAIR	Details ...	33	0.55	1.54	0.008	0.042	0.508	5878
16	KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR BIOSYNTHESIS	Details ...	25	0.57	1.54	0.008	0.041	0.525	4889
17	KEGG_RNA_POLYMERASE	Details ...	28	0.56	1.52	0.010	0.049	0.605	5967
18	KEGG_SELENOAMINO_ACID_METABOLISM	Details ...	26	0.56	1.52	0.011	0.049	0.625	3640
19	KEGG_N_GLYCAN BIOSYNTHESIS	Details ...	44	0.53	1.52	0.006	0.047	0.627	5159
20	KEGG_ONE_CARBON_POOL_BY_FOLATE	Details ...	17	0.59	1.49	0.022	0.060	0.738	3785

Oxidative phosphorylation; transcription

C3A cells_High vs. Ctrl

Table: Gene sets enriched in phenotype: 100 (4 samples) [\[main text format\]](#)

GS	KEGG_ERBB_SIGNALING_PATHWAY	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR p-val	FWER p-val	RANK AT MAX
1	KEGG_ERBB_SIGNALING_PATHWAY	Details ...	77	-0.48	-1.92	0.000	0.022	0.025	2701
2	KEGG_RIBOSOME	Details ...	67	-0.45	-1.84	0.000	0.026	0.062	5214
3	KEGG_JAK_STAT_SIGNALING_PATHWAY	Details ...	103	-0.42	-1.74	0.000	0.056	0.175	2702
4	KEGG_AMINOACYL_TRNA BIOSYNTHESIS	Details ...	41	-0.47	-1.65	0.009	0.103	0.368	1833
5	KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION	Details ...	40	-0.46	-1.62	0.006	0.102	0.438	3398
6	KEGG_MAPK_SIGNALING_PATHWAY	Details ...	217	-0.34	-1.58	0.000	0.124	0.574	3483
7	KEGG_REGULATION_OF_AUTOPHAGY	Details ...	22	-0.51	-1.57	0.019	0.120	0.621	2155
8	KEGG_BASAL_TRANSCRIPTION_FACTORS	Details ...	31	-0.47	-1.55	0.024	0.116	0.660	4250
9	KEGG_CHRONIC_MYELOID_LEUKEMIA	Details ...	71	-0.37	-1.45	0.018	0.243	0.924	3731
10	KEGG_INOSITOL_PHOSPHATE_METABOLISM	Details ...	49	-0.39	-1.44	0.032	0.233	0.936	3463
11	KEGG_ACUTE_MYELOID_LEUKEMIA	Details ...	51	-0.38	-1.42	0.045	0.240	0.950	2701
12	KEGG_MTOR_SIGNALING_PATHWAY	Details ...	48	-0.39	-1.42	0.031	0.229	0.955	2765
13	KEGG_LONG_TERM_DEPRESSION	Details ...	47	-0.38	-1.40	0.040	0.235	0.967	2538
14	KEGG_LEISHMANIA_INFECTION	Details ...	50	-0.37	-1.35	0.056	0.320	0.993	4441
15	KEGG_ENDOCYTOSIS	Details ...	160	-0.29	-1.29	0.032	0.415	0.999	3743
16	KEGG_NEUROTROPHIN_SIGNALING_PATHWAY	Details ...	112	-0.30	-1.27	0.067	0.453	1.000	3696
17	KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM	Details ...	66	-0.32	-1.27	0.095	0.429	1.000	3463
18	KEGG_T_CELL_RECECTOR_SIGNALING_PATHWAY	Details ...	63	-0.30	-1.22	0.122	0.528	1.000	3734
19	KEGG_CYTOKINE_CYTOKINE_RECECTOR_INTERACTION	Details ...	150	-0.27	-1.21	0.085	0.531	1.000	3105
20	KEGG_AXON_GUIDANCE	Details ...	102	-0.29	-1.20	0.100	0.529	1.000	3537

Transcription;
ERBB signalling
pathway

GS	KEGG_ERBB_SIGNALING_PATHWAY	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR p-val	FWER p-val	RANK AT MAX
1	KEGG_OXIDATIVE_PHOSPHORYLATION	Details ...	118	0.61	2.50	0.000	0.000	0.000	3646
2	KEGG_PARKINSONS_DISEASE	Details ...	115	0.61	2.50	0.000	0.000	0.000	3646
3	KEGG_DNA_REPLICATION	Details ...	36	0.70	2.32	0.000	0.000	0.000	3928
4	KEGG_GLYCOLYSIS_GLUCONEOGENESIS	Details ...	51	0.62	2.22	0.000	0.000	0.000	2145
5	KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS	Details ...	100	0.55	2.21	0.000	0.000	0.000	4063
6	KEGG_ALZHEIMERS_DISEASE	Details ...	147	0.52	2.21	0.000	0.000	0.000	3646
7	KEGG_PEROXISOME	Details ...	69	0.56	2.14	0.000	0.000	0.001	3215
8	KEGG_PROPANATE_METABOLISM	Details ...	31	0.66	2.13	0.000	0.000	0.001	2369
9	KEGG_STEROID_BIOSYNTHESIS	Details ...	16	0.77	2.12	0.000	0.000	0.001	3387
10	KEGG_BETA_ALANINE_METABOLISM	Details ...	19	0.72	2.04	0.000	0.000	0.002	2446
11	KEGG_HUNTINGTONS_DISEASE	Details ...	159	0.47	2.02	0.000	0.000	0.003	3646
12	KEGG_FATTY_ACID_METABOLISM	Details ...	38	0.59	1.99	0.000	0.000	0.005	3974
13	KEGG_VALINE_leUCINE_and_ISOLEUCINE_DEGRADATION	Details ...	43	0.57	1.97	0.000	0.001	0.007	2526
14	KEGG_BUTANOATE_METABOLISM	Details ...	28	0.62	1.95	0.002	0.001	0.013	2891
15	KEGG_GLUTATHIONE_METABOLISM	Details ...	48	0.54	1.93	0.000	0.001	0.016	4269
16	KEGG_CARDIAC_MUSCLE_CONTRACTION	Details ...	58	0.52	1.92	0.000	0.001	0.021	4151
17	KEGG_PROTEASOME	Details ...	41	0.56	1.91	0.000	0.002	0.024	4536
18	KEGG_PENTOSE_PHOSPHATE_PATHWAY	Details ...	24	0.63	1.91	0.000	0.001	0.024	1799
19	KEGG_PYRUVATE_METABOLISM	Details ...	37	0.57	1.90	0.001	0.001	0.026	4047
20	KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS	Details ...	20	0.65	1.87	0.000	0.002	0.035	2894

Oxidative
phosphorylation;
Energy metabolism
related pathway ;
Glutathione
metabolism.

A549 cells_Medium vs. Ctrl

Table: Gene sets enriched in phenotype 10 (4 samples) [plain text format]

	GS follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FOR q-val	FWER p-val	RANK AT MAX
1	KEGG_STEROID_BIOSYNTHESIS	Details...	16	-0.72	-2.23	0.000	0.002	0.002	2361
2	KEGG_ABC_TRANSPORTERS	Details...	34	-0.55	-2.04	0.000	0.004	0.009	3172
3	KEGG_LYSOSOME	Details...	113	-0.43	-2.03	0.000	0.003	0.010	2734
4	KEGG_NITROGEN_METABOLISM	Details...	20	-0.48	-1.54	0.046	0.164	0.503	2789
5	KEGG_SPHINGOLIPID_METABOLISM	Details...	35	-0.38	-1.39	0.056	0.370	0.859	2312
6	KEGG_LINOLEIC_ACID_METABOLISM	Details...	17	-0.40	-1.25	0.180	0.710	0.993	1212
7	KEGG_Ether_LIPID_METABOLISM	Details...	24	-0.36	-1.24	0.171	0.645	0.994	1212
8	KEGG_PPAR_SIGNALING_PATHWAY	Details...	52	-0.29	-1.18	0.167	0.800	0.998	821
9	KEGG_ECM_RECECTOR_INTERACTION	Details...	62	-0.27	-1.15	0.201	0.838	0.999	1063
10	KEGG_GLYCOSAMINOGLYCAN_DEGRADATION	Details...	15	-0.36	-1.14	0.246	0.776	0.999	3574
11	KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	Details...	29	-0.31	-1.12	0.278	0.767	1.000	1448
12	KEGG_CYTOKINE_CYTOKINE_RECECTOR_INTERACTION	Details...	150	-0.23	-1.11	0.155	0.754	1.000	2317
13	KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	Details...	31	-0.30	-1.10	0.290	0.717	1.000	30
14	KEGG_PRIMARY_IMMUNODEFICIENCY	Details...	25	-0.30	-1.02	0.417	0.981	1.000	2135
15	KEGG_GLYCOLYSIS_GLUCONEOGENESIS	Details...	51	-0.25	-1.01	0.441	0.990	1.000	275
16	KEGG_COMPLEMENT_AND_COAGULATION_CASCADES	Details...	56	-0.24	-1.00	0.449	0.961	1.000	2591
17	KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS	Details...	20	-0.30	-0.96	0.495	1.000	1.000	1181
18	KEGG_BUTANOATE_METABOLISM	Details...	28	-0.27	-0.94	0.561	1.000	1.000	2049
19	KEGG_PROPANOATE_METABOLISM	Details...	31	-0.25	-0.93	0.550	1.000	1.000	1453
20	KEGG_PENTOSE_PHOSPHATE_PATHWAY	Details...	24	-0.27	-0.90	0.628	1.000	1.000	1764

Steroid biosynthesis;
lysosome

	GS follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FOR q-val	FWER p-val	RANK AT MAX
1	KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS	Details...	100	0.67	2.55	0.000	0.000	0.000	2637
2	KEGG_SPLICOSOME	Details...	126	0.55	2.15	0.000	0.000	0.000	4974
3	KEGG_PYRIMIDINE_METABOLISM	Details...	90	0.54	2.03	0.000	0.000	0.001	5381
4	KEGG_DNA_REPLICATION	Details...	36	0.63	2.02	0.000	0.000	0.002	3976
5	KEGG_RNA_PolyMERASE	Details...	28	0.63	1.93	0.001	0.002	0.010	3210
6	KEGG_CELL_CYCLE	Details...	120	0.50	1.92	0.000	0.002	0.012	5661
7	KEGG_PROTEASOME	Details...	41	0.56	1.83	0.000	0.008	0.051	5919
8	KEGG_HUNTINGTONS_DISEASE	Details...	159	0.45	1.82	0.000	0.007	0.056	6472
9	KEGG_RIBOSOME	Details...	87	0.49	1.81	0.000	0.007	0.062	7705
10	KEGG_PARKINSONS_DISEASE	Details...	115	0.45	1.73	0.000	0.023	0.203	6634
11	KEGG_NUCLEOTIDE_EXCISION_REPAIR	Details...	43	0.51	1.67	0.003	0.044	0.375	5440
12	KEGG_MISMATCH_REPAIR	Details...	23	0.58	1.67	0.009	0.042	0.382	5844
13	KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION	Details...	51	0.49	1.66	0.004	0.045	0.431	4985
14	KEGG_OOCYTE_MEIOSIS	Details...	100	0.43	1.62	0.002	0.062	0.586	2730
15	KEGG_Olfactory_Transduction	Details...	71	0.45	1.61	0.002	0.062	0.615	2178
16	KEGG_PURINE_METABOLISM	Details...	135	0.40	1.57	0.002	0.089	0.757	5913
17	KEGG_BASAL_TRANSDUCTION_FACTORS	Details...	31	0.51	1.57	0.018	0.085	0.761	5141
18	KEGG_OXIDATIVE_PHOSPHORYLATION	Details...	118	0.41	1.57	0.002	0.080	0.761	6634
19	KEGG_BASE_EXCISION_REPAIR	Details...	33	0.49	1.55	0.023	0.094	0.830	5271
20	KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	Details...	41	0.47	1.54	0.015	0.100	0.863	5830

Transcription;
oxidative phosphorylation

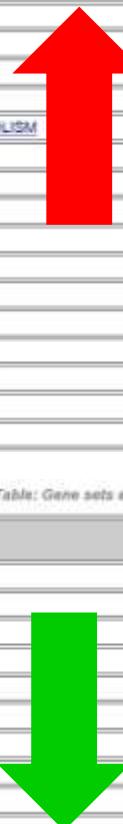

A549 cells_High vs. Ctrl

Table: Gene sets enriched in phenotype 100 (4 samples) [plain text format]

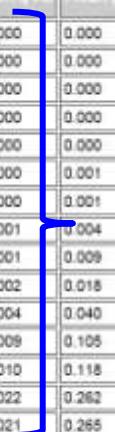

	GS Subset RHH to MSigDB	GS DETAILS	SIZE	ES	NET	NOM p-val	FDR p-val	FWER p-val	RANK AT MAX
1	KEGG_ALANINE ASPARTATE_AND GLUTAMATE_METABOLISM	Details ...	28	-0.46	-1.52	0.037	1.000	0.780	1742
2	KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT	Details ...	38	-0.40	-1.41	0.047	1.000	0.965	2617
3	KEGG_JAK_STAT_SIGNALING_PATHWAY	Details ...	103	-0.33	-1.41	0.016	1.000	0.970	2911
4	KEGG_LONG_TERM_DEPRESSION	Details ...	47	-0.38	-1.33	0.076	1.000	0.987	1788
5	KEGG_AXON_GUIDANCE	Details ...	102	-0.31	-1.32	0.054	1.000	0.998	3794
6	KEGG_ERBB_SIGNALING_PATHWAY	Details ...	77	-0.32	-1.31	0.063	1.000	0.999	4421
7	KEGG_LYSOSOME	Details ...	113	-0.30	-1.31	0.036	0.908	0.999	2935
8	KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	Details ...	29	-0.39	-1.28	0.127	0.932	0.999	1184
9	KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM	Details ...	43	-0.35	-1.28	0.108	0.842	1.000	3069
10	KEGG_AMINOACYL_tRNA BIOSYNTHESIS	Details ...	41	-0.38	-1.26	0.137	0.842	1.000	1645
11	KEGG_GNRH_SIGNALING_PATHWAY	Details ...	81	-0.31	-1.26	0.094	0.774	1.000	1409
12	KEGG_CALCIUM_SIGNALING_PATHWAY	Details ...	120	-0.29	-1.25	0.069	0.743	1.000	1633
13	KEGG_PROTEIN_EXPORT	Details ...	23	-0.40	-1.25	0.176	0.689	1.000	4275
14	KEGG_AMYOTROPHIC_LATERAL_SCLEROSISALS	Details ...	41	-0.35	-1.24	0.147	0.683	1.000	3250
15	KEGG_PANTOTHENATE_AND_COA BIOSYNTHESIS	Details ...	15	-0.45	-1.23	0.211	0.658	1.000	508
16	KEGG_SELENOAMINO_ACID_METABOLISM	Details ...	26	-0.38	-1.23	0.178	0.624	1.000	1622
17	KEGG_CHRONIC_MYELOID_LEUKEMIA	Details ...	71	-0.29	-1.16	0.164	0.786	1.000	1784
18	KEGG_CYTOKINE_CYTOKINE_RECECTOR_INTERACTION	Details ...	150	-0.26	-1.17	0.157	0.768	1.000	4092
19	KEGG_AUTOIMMUNE_THYROID_DISEASE	Details ...	24	-0.38	-1.14	0.286	0.853	1.000	1230
20	KEGG_STEROID BIOSYNTHESIS	Details ...	16	-0.39	-1.11	0.316	0.949	1.000	3195

Table: Gene sets enriched in phenotype 0 (4 samples) [plain text format]

	GS Subset RHH to MSigDB	GS DETAILS	SIZE	ES	NET	NOM p-val	FDR p-val	FWER p-val	RANK AT MAX
1	KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS	Details ...	100	0.79	3.22	0.000	0.000	0.000	1997
2	KEGG_DNA_REPLICATION	Details ...	36	0.66	2.67	0.000	0.000	0.000	938
3	KEGG_SPLICOSOME	Details ...	126	0.62	2.62	0.000	0.000	0.000	3882
4	KEGG_CELL_CYCLE	Details ...	120	0.60	2.47	0.000	0.000	0.000	2314
5	KEGG_MISMATCH_REPAIR	Details ...	23	0.74	2.24	0.000	0.000	0.000	1265
6	KEGG_HOMOLOGOUS_RECOMBINATION	Details ...	26	0.66	2.11	0.000	0.000	0.001	1910
7	KEGG_PYRIMIDINE_METABOLISM	Details ...	90	0.51	2.05	0.000	0.000	0.001	3065
8	KEGG_BASE_EXCISION_REPAIR	Details ...	33	0.62	2.03	0.000	0.001	0.004	2456
9	KEGG_PARKINSONS_DISEASE	Details ...	115	0.48	1.99	0.000	0.001	0.009	5817
10	KEGG_OOCYTE_MEIOSIS	Details ...	100	0.48	1.96	0.000	0.002	0.018	1981
11	KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION	Details ...	75	0.49	1.89	0.001	0.004	0.040	1981
12	KEGG_OXIDATIVE_PHOSPHORYLATION	Details ...	118	0.43	1.81	0.000	0.009	0.105	4800
13	KEGG_NUCLEOTIDE_EXCISION_REPAIR	Details ...	43	0.52	1.80	0.002	0.010	0.118	2681
14	KEGG_PURINE_METABOLISM	Details ...	135	0.41	1.72	0.000	0.022	0.262	3065
15	KEGG_GLYCOLYSIS_GLUCONEOGENESIS	Details ...	51	0.47	1.72	0.002	0.021	0.265	2278
16	KEGG_DRUG_METABOLISM_OTHER_ENZYMES	Details ...	33	0.48	1.60	0.018	0.066	0.648	2581
17	KEGG_CARDIAC_MUSCLE_CONTRACTION	Details ...	56	0.43	1.59	0.008	0.067	0.674	4724
18	KEGG_PROTEASOME	Details ...	41	0.46	1.59	0.009	0.063	0.675	6892
19	KEGG_LYSINE_DEGRADATION	Details ...	43	0.45	1.56	0.018	0.075	0.757	4107
20	KEGG_HUNTINGTONS_DISEASE	Details ...	159	0.36	1.55	0.002	0.075	0.769	4800

N/A

Oxidative phosphorylation; Cell cycle

Preliminary conclusion:

- Gene sets (pathways) related into energy metabolism (e.g. oxidative phosphorylation pathway), transcription pathway were disturbed in A549 and HepG2 cells after exposure to TDCPP by bioinformatics analysis.

RT- real time PCR to be employed to validate some genes expressions;

.....

.....

then,

a story might be expected...

Next 5 months Plan

- 1) Finish supplemented experiments in TDCPP study
- 2) Omics study of effect of dust extracts?? to cells
- 3) Thesis writing up

4) Job hunting:

Postdoc in toxicology (flame retardant's toxicity), omics (toxicogenomics), molecular biology...

Please email to: j.zhang.6@bham.ac.uk (Jinkang Zhang)

THANK YOU!