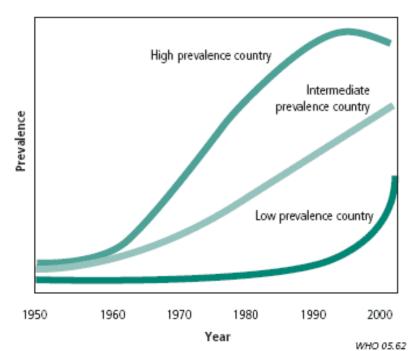
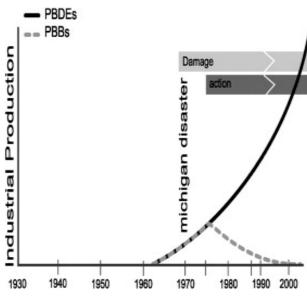
The Role of FRs in Indoor Dust in Potentiating/Facilitating Allergic Responses to Inhaled Allergens

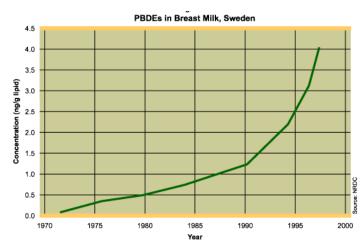
DERYA CANBAZ, ESR-12

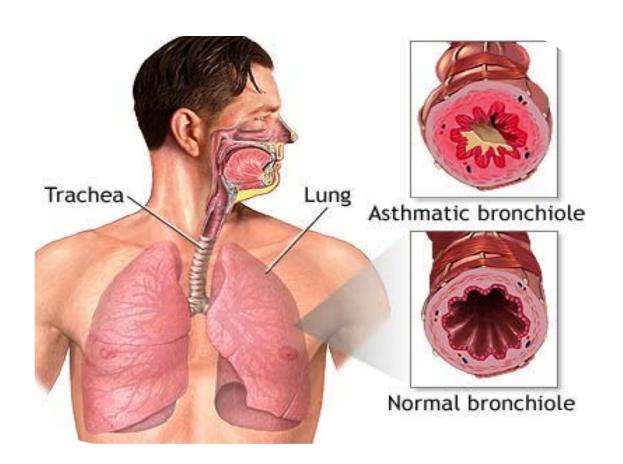
Supervisor: Leonie van Rijt



EPIDEMICAL INCREASE IN INCIDENCE ASTHMA

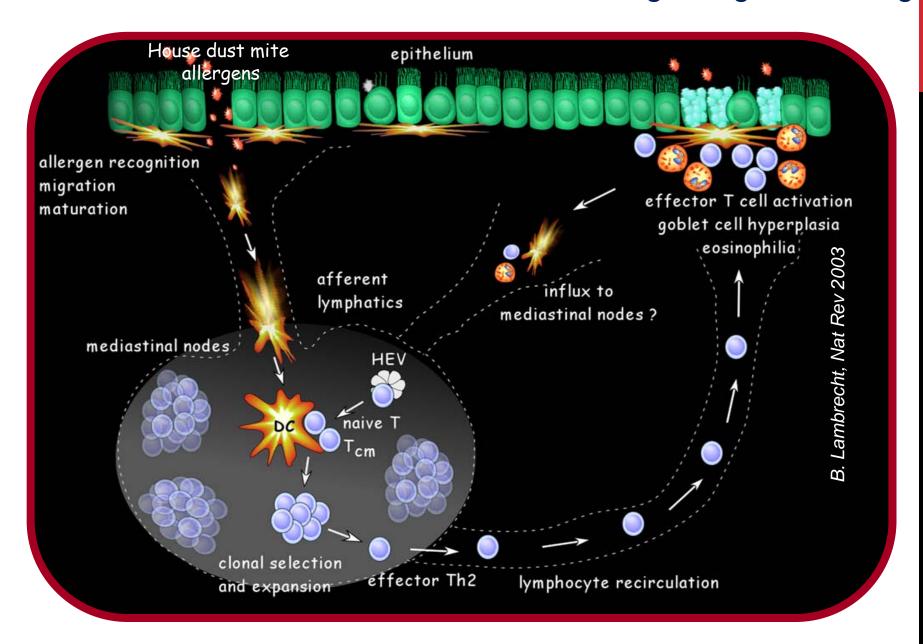

IS THERE AN ASSOCIATION WITH EXPOSURE TO


PBDES?

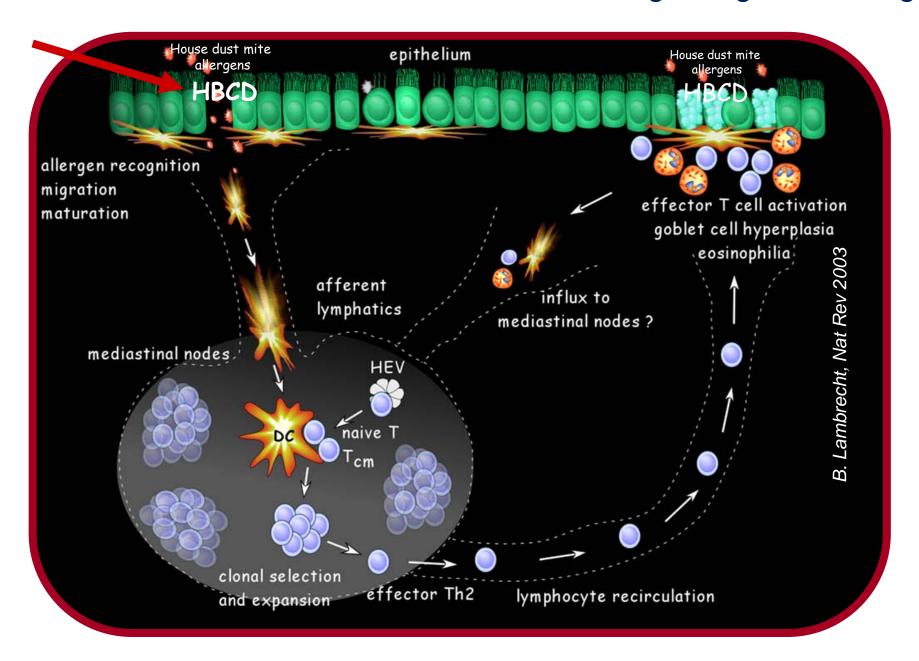


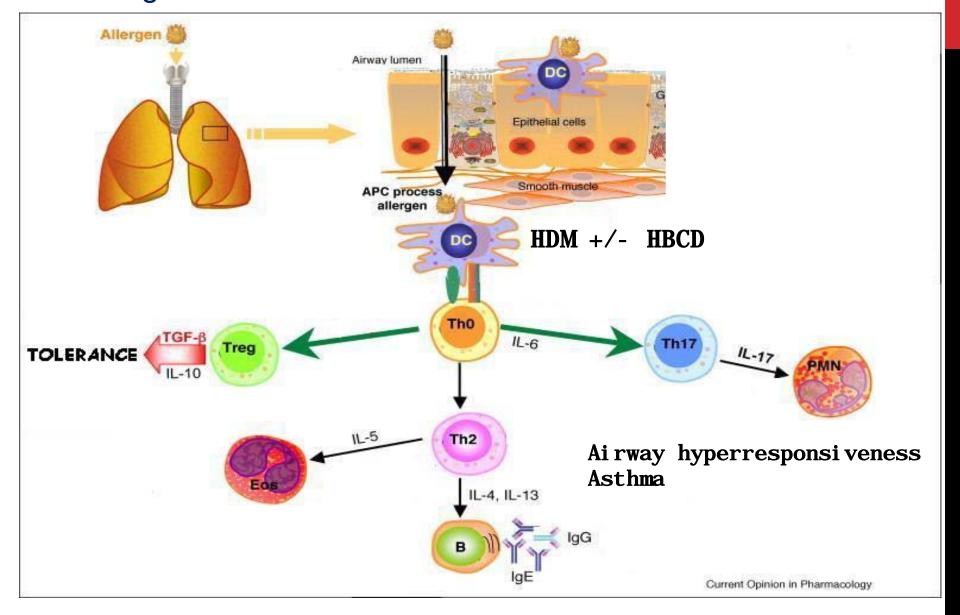
World Health Organisation 2005

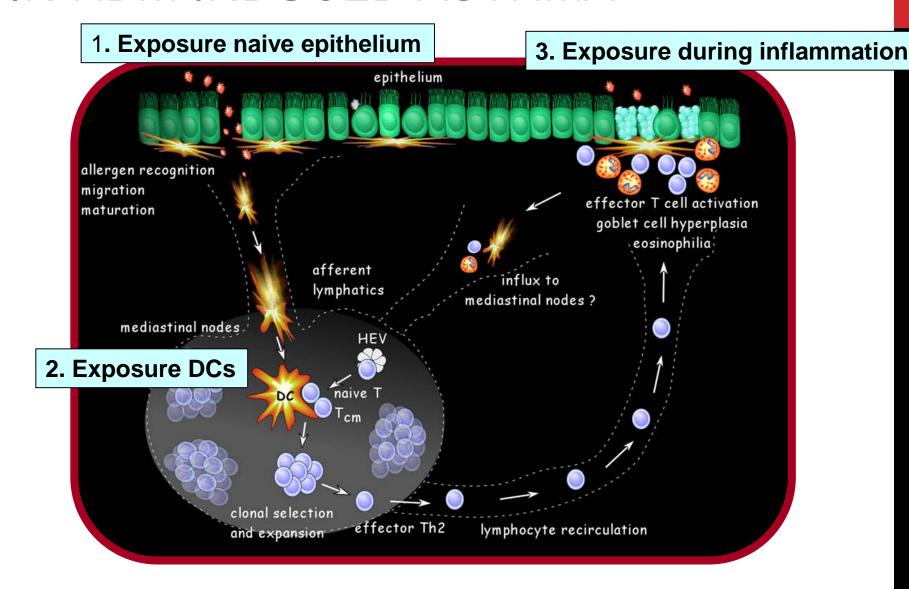
Allergic Asthma

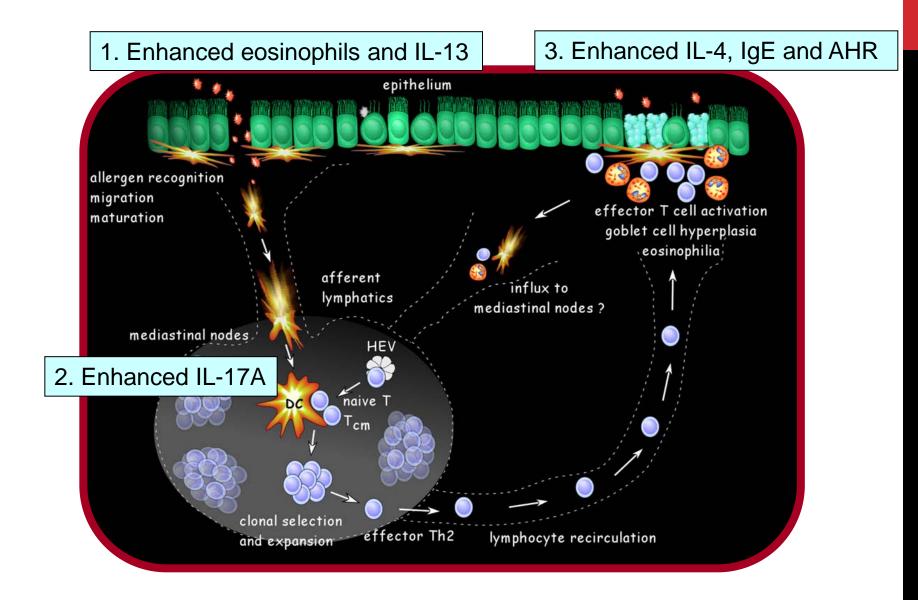


- -Chronic inflammation of airways
- -Aero-allergens induce bronchoconstriction

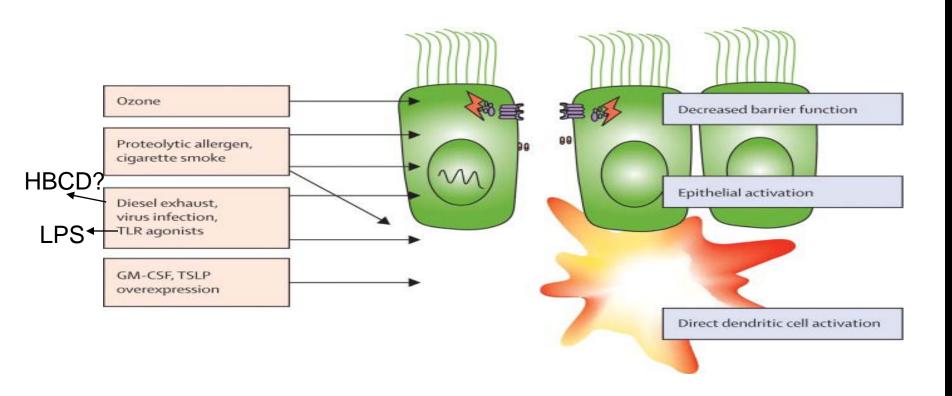

Inhalation of dust: House dust mite Chemicals (Flame Retardants)

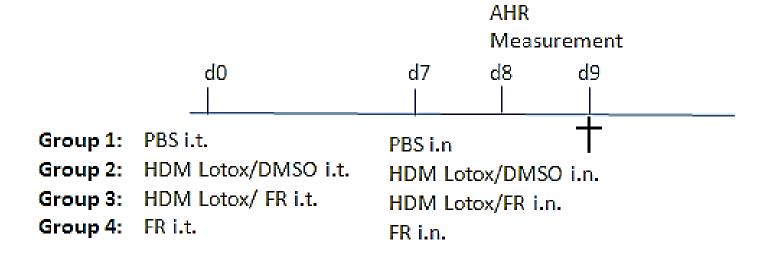

Role of dendritic cells in sensitisation and during allergen challenge

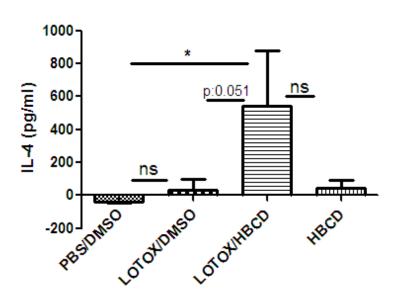

Role of dendritic cells in sensitisation and during allergen challenge

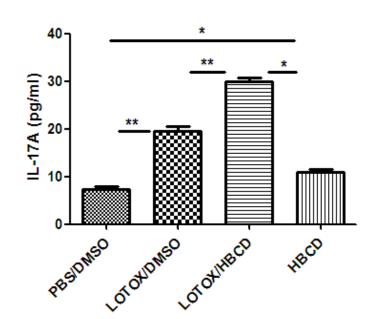

Activated DCs can determine the type of immune response by instructing naive T cells

MOUSE MODELS FOR ROLE OF HBCD IN HDM INDUCED ASTHMA


HBCD can contribute to an aggravation of the immune response to hdm at different stages of the response


What's the role of HBCD in the aggravation of the immune response to HDM?


- Does HBCD act as a 'DANGER' signal for dendritic cells?


'Danger signals' (adjuvants) in the induction of the inflammatory response

RESULTS:

Is Early exposure to FRs via house dust associated with Development of Allergic Asthma? A birth cohort study.

STUDY POPULATION

Swedish birth cohort (BAMSE)

- Questionnaire-heredity-socioeconomic factors

4089 children (1994-1996 new born) followed up to 8 years

-House dust samples were collected at about 2 months after birth.

- GALEN criteria: Wheezing, Doctor diagnosis, Anti asthma drugs in the last
- preceding evaluation at age 4 and at age 8 or at age 8 only

110 children identified as allergic asthma

 Controls never experienced asthma and no sensitization (matched for socio-economic status, sex and genetics)

CHARACTERISTICS OF THE SELECTED POPULATION

		Never asthma	Transient asthma	Late asthma	Persistent asthma	Total asthma
		(n=110)	(4 yrs)	(8 yrs)	(4-8 yrs)	(n=110)
sex	0 female	48	11	18	19	48
	1 male	62	20	28	14	62
her	0 no	63	15	28	20	63
	1 yes	47	16	18	13	47
SEI	0=blue collar	21	2	10	9	21
	1=white collar	89	29	36	24	89
	2=other	0	0	0	0	0
Sens at 4	0=no	88	11	30	26	67
yrs	(missing values)	(22*)	(8*)	(5*)	(1*)	
	1=yes	0	12	11	6	29
Sens at 8	0=no	99	1	25	24	50
yrs	(missing values)	(11*)	(1*)			
	1=yes	0	29	21	9	59

ANALYSIS OF FLAME RETARDANTS IN HOUSE DUST

- Dust samples were extracted with acetone and toluene and cleaned up by Na₂SO₄ column
 OPFRs ready for GC-MS analysis

PRELIMINARY RESULTS:

Concentrations organophosphate flame retardants in house dust of asthmatic children and controls

		House d	lust Asthmat	ic childre	n			House dust matched controls							
OPFR (ng/g dust)	LOD	>LOD (%)	Minimum	25th	median	75th	maximum	>LOD (%)	minimum	25th	median	75th	Maximum		
TCEP	20	93.3	<lod< td=""><td>49.5</td><td>101</td><td>266</td><td>298301</td><td>98.1</td><td><lod< td=""><td>53</td><td>109</td><td>211.5</td><td>323418</td></lod<></td></lod<>	49.5	101	266	298301	98.1	<lod< td=""><td>53</td><td>109</td><td>211.5</td><td>323418</td></lod<>	53	109	211.5	323418		
TCPP1	20	95.2	<lod< td=""><td>61.5</td><td>117</td><td>235</td><td>203982</td><td>94.3</td><td><lod< td=""><td>43.5</td><td>93</td><td>414</td><td>727777</td></lod<></td></lod<>	61.5	117	235	203982	94.3	<lod< td=""><td>43.5</td><td>93</td><td>414</td><td>727777</td></lod<>	43.5	93	414	727777		
TDCPP	40	94.3	<lod< td=""><td>85.5</td><td>151</td><td>441</td><td>538514</td><td>91.4</td><td><lod< td=""><td>88</td><td>168</td><td>404.5</td><td>185931</td></lod<></td></lod<>	85.5	151	441	538514	91.4	<lod< td=""><td>88</td><td>168</td><td>404.5</td><td>185931</td></lod<>	88	168	404.5	185931		
TBEP	400	93.3	<lod< td=""><td>1124.5</td><td>3329</td><td>6016.5</td><td>43363</td><td>91.4</td><td><lod< td=""><td>1434.5</td><td>3702</td><td>7118.5</td><td>57209</td></lod<></td></lod<>	1124.5	3329	6016.5	43363	91.4	<lod< td=""><td>1434.5</td><td>3702</td><td>7118.5</td><td>57209</td></lod<>	1434.5	3702	7118.5	57209		
TPP	20	100	109	279	419	772	13474	100	96	306	619	1466	70313		
EHDP	20	100	27	102.5	159	278.5	15342	100	27	110	172	413.5	7364		
MMP- TCP	40	81	<lod< td=""><td>94.5</td><td>190</td><td>430.5</td><td>4793</td><td>89.5</td><td><lod< td=""><td>114.5</td><td>291</td><td>730</td><td>42712</td></lod<></td></lod<>	94.5	190	430.5	4793	89.5	<lod< td=""><td>114.5</td><td>291</td><td>730</td><td>42712</td></lod<>	114.5	291	730	42712		
∑OPFRs			885	3652	6498	12895	582405		839	3548	6598	13838.5	74192		

ACKNOWLEDGEMENTS:

AMC-Dept. Exp. Immunology

Dr. Leonie van Rijt Adrian Logiantara Prof.Dr. Ronald van Ree

VU-IVM

Martin van Velzen Prof Dr. Pim Leonards

Occupational and Environmental Health, Karolinska Hospital Magnus Wickman

	5320-1	5320-2	5320-0	6965-1	6965-2	6965-0	5926-1	5926-2	5926-0	E000.4	5000.0	5000-0	3096-1	3096-0
	5320-1	5520-2	5520-0	0300-1	0900-2	0300-0	0020-1	5520-2	0920-0	5000-1	5000-2	5000-0	3030-1	2090-0
TiBP														
TBP														
TCEP	81	98	130	<19	<22	89	*32	*39	*53	1898	2112	4061	*32	83
TCPP1	84	117	120	184	328	354	69	129	208	31089	32316	33877	75	156
TCPP2														
TDCPP	163	*94	139	500	303	387	632	916	1097	555654	646108	618415	<38	<42
TBEP	3606	4193	4920	2166	2388	1774	<390	<381	*810	3341	5893	5076	1658	4389
TBPd27														
TPP	161	181	152	125	136	199	413	426	466	173	163	373	306	447
EHDP	128	124	141	181	237	193	175	147	90	488	408	354	*37	*66
TEHP														
MMM-TCP														
MMP-TCP	1145	1041	988	<38	<44	*118	291	562	*109	137	239	150	<38	165
MPP-TCP														
PPP-TCP														

Concentrations of polybrominated diphenyl ethers in matched samples of indoor dust and breast milk in New Zealand

Jonathan D. Coakley ^{a,*}, Stuart J. Harrad ^b, Emma Goosey ^b, Nadeem Ali ^c, Alin-Constantin Dirtu ^c, Nele Van den Eede ^c, Adrian Covaci ^c, Jeroen Douwes ^a, Andrea 't Mannetje ^a

Table 2
Summary of PBDEs in indoor dust and breast milk.

							Mattress dust (ng/g)					Breast milk (pg/g lipid)					
											N = 33						
Congener	Mean	Median	Minimum	Maximum	% < LOD	Mean	Median	Minimum	Maximum	% < LOD	Mean	Median	Minimum	Maximum	% < LOD		
BDE17	0.1	0.1	0.1	1.0	88	0.3	0.1	0.1	0.9	69	2.4	2,2	0.6	5.6	27		
BDE28	0.7	0.6	0.1	1.3	12	1.2	0.8	0.1	7.7	6	217.9	181.0	48.8	751.0	0		
BDE47	30.2	24.2	0.3	98.0	3	56.1	46.3	6.5	288.4	0	2673.8	2140.0	317.0	7710.0	0		
BDE49	1.6	1.3	0.1	3.6	6	2.1	2.2	0.1	5.0	6	25.6	20.9	6.5	96.4	0		
BDE66	1.0	0.8	0.1	3.1	27	1.3	1.1	0.1	7.8	25	31.4	26.2	5.4	103.0	0		
BDE85	2.3	1.7	0.1	7.6	21	2.2	1.9	0.1	5.8	25	51.6	45.1	2.2	168.0	6		
BDE99	51.8	31.5	3.3	219.1	0	83.9	41.8	8.1	540.3	0	565.9	560.0	66.2	1290.0	0		
BDE100	9.7	6.4	0.3	41.1	3	16.1	9.8	0.3	94.1	6	568.7	499.0	70.8	1820.0	0		
BDE153	8.8	4.6	0.3	58.9	12	10.6	6.7	0.3	58.2	6	750.4	517.0	142.0	3820.0	0		
BDE154	4.7	3.7	0.3	19.8	27	7.1	3.1	0.3	43.1	13	39.0	35.5	6.5	101.0	0		
BDE183	12.8	2.7	0.3	238.4	33	7.5	6.3	0.3	21.1	25	66.1	42.3	11.5	512.0	0		
BDE196	4.7	0.3	0.3	44.2	55	10.3	4.9	0.3	34.3	25	16.5	12.6	2.5	43.9	6		
BDE197	4.7	0.3	0.3	68.0	61	5.6	3.6	0.3	17.5	25	127.9	108.0	50.3	320.0	0		
BDE203	2.9	0.3	0.3	25.0	64	8.1	3.0	0.3	30.3	25	18.8	16.5	3.0	45.0	15		
BDE206	114.4	24.0	3.2	989.3	0	163.6	52.7	3.5	1253.3	0	30.6	18.0	2.9	195.0	12		
BDE209	2505.2	598.0	28.8	27394.3	0	2703.0	1018.0	105.9	21956.2	0	375.6	190.5	65.3	3140.0	3		

^a Centre for Public Health Research, Massey University, Wellington 6140, New Zealand

^b School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

^c Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium