How can we pool our resources, infrastructures and expertise to accelerate new therapeutics for patients
Outline

• Drug discovery for common diseases is very inefficient
• Problem in rare diseases
• Opportunity in rare diseases
• What have we been doing in SGC?
• What have we been doing in Oxford more broadly?
• 3 exemplars
• What we would like to do with Birmingham and nationally...... then internationally
Drug discovery for common diseases is very inefficient

• Too costly
• Too risky
• Too slow
Problem in rare diseases

• 350 million patients

• Half are children

• 30% do not reach age of 5

• 6-8 years for diagnosis

• 95% have no FDA approved treatment
Opportunity in rare diseases

• Pharma investing increasing resources (Pfizer, Sanofi, Takeda/Shire.....)
 • Many are monogenic.......higher probability for clinical success
 • Accelerated approval
 • Tax credits
 • Insights into more complex diseases
 • Can secure ROI in more common/ most debilitating subset

• Genetic insights: Genome England

• Patient groups increasingly desperate/ committed

• UK has more investment funds per head than any other country in Europe
What have we been doing in SGC?

• Pooling resources......share risk

• Working with several pharmas to generate novel, high quality, early discovery tools, for novel or ‘intractable’ genes/ targets......drive innovation

• Sharing all tools, data, knowledge freely........crowd source science

• Releasing everything immediately........reduce duplication and wastage
What have we been doing in Oxford more broadly?

Oxford Rare Disease Centre (Matthew Wood and Kay Davies): focus on innovation, collaboration, translation, quickly

• > 250 PIs working on > 350 diseases

• collaborations with
 • academics/ clinicians across the world
 • several pharmas
 • numerous patient groups
 • many investors
Open tools accelerate science, proprietary programmes, translational studies and enterprise...........ultimately patient benefit

GSK informs SGC about Mitsubishi compound

Oxford and Harvard start collaboration

Co-publication of BRD4 inhibitors
 - JQ1, SGC/ Harvard, NUT
 - I-BET, GSK, inflammation
 JQ1 distributed to 100+ labs

BRD4 linked to
 - AML (Nature)
 - MM (Cell)

Filippakopoulos et al, Nature 2010 (Dec)

Growing interest in industry:
Pfizer/ SGC produce another BET inhibitor

GSK carries out first in man (for published indication)
Gene, structure, inhibitor, preclinical PoC, clinical molecule from industry........clinical PoC

Gene

FOP genetic linkage discovered in Oxford: kinase

A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva

Mechanism

Structure solved and mutations mapped

Gain of function

Preclinical

New inhibitor

Preclinical PoC

Clinical candidate

Clinical molecule identified

Potent and selective

Saracatinib

FOP genetic linkage discovered in Oxford: kinase

A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva

Gain of function

New inhibitor

Preclinical PoC

Clinical molecule identified

Potent and selective

Saracatinib
Strategies for LoF metabolic disorders

- Substrate Reduction
- Functional Bypass
- Pharmacological chaperoning
- Accumulation
- Deficiency
- Functional Bypass
Lysine Metabolism

- DHTKD1 (MIM 245130)
- ALDH7A1 (MIM 266100)

Galactose Metabolism

- Pyridoxine dependent epilepsy
 - ALDH7A1 mutations
- Classic galactosemia
 - GALT mutations

Glyoxylate Metabolism

- Pyridoxine dependent epilepsy
- Classic galactosemia
- Primary Hyperoxaluria

Therapeutic targets for substrate reduction therapy

- Upstream targets to be inhibited
Early discovery tools generated........HTS underway

AASS inhibition is therapeutic target
- ALDH7A1 substrate accumulation is pathological driver
- Metabolite analysis in mice suggests major pathway via saccharopine (Pena IA 2016 BBA)
- Naturally occurring AASS mutations are benign (Houten S 2013 OJRD)

Tools generated
- Proteins
 - LKR, SDH, full-length, mutants
- Structures
 - apo, holo SDH domain
- Assay
 - fluorescence activity, DSF
- Chemical matters
 - Structure of AASS-SDH + Pro
 - Structure of AASS-SDH + Pro analog
- Knockdown
 - siRNA knockdown of AASS in patient fibroblasts
 - reduced metabolite accumulation & rescued phenotype

Ongoing studies
- CRISPR-cas9 zebrafish model
- HTS with NIH-NCATS
What we would like to do with Birmingham and nationally......internationally

• Build national network/ infrastructure for gene to clinical POC

• We are happy in Oxford to generate early reagents for novel genes and targets using our resources (freely available)

• We wish to translate, develop and commercialise derivatives of these by working with
 • Pharmas
 • Patient groups
 • Charitable and Government funders
 • Investors

• Preferably in open manner........to ensure therapies are affordable