Smart Grids or Smart Pricing

David Hirst
Feeding Renewable Policy Conference
Birmingham University
18th January 2013
Agenda

- Electricity
- Trading and Operating a System Without Storage
 - NETA, BETTA and the Balancing Mechanism
- Renewables and Flexibility
- Smart meters or Smart Pricing – Flowcost
- Settlement
- Discussion
Electricity

- A core enabler of the later Industrial Revolution
- Vital to our daily lives
- Instantaneous Transmission of energy through space – wires and transformers – from generators to consuming devices
- A system utterly without storage
 - Always constrained by energy conversion capability
 - No transmission through time!
- No credible technology alternative in prospect
- Vital change is Renewables not fossil-fuel generation
 - Which is (mostly) timed by nature, not by us
Electricity Supply Industry (ESI)

- “Deregulation” separates functions
- **System Operator** (and usually Transmission Operator) remains a statutory monopoly
- Wholesale competition among generators (who sell to Retailers)
- Distribution monopolies for each geography
- Competition among Retailers (known as Suppliers!) for customers
- Overseen by Regulator (Ofgem) & DECC
- EU now has ENTSO-E
Demand has been Largely Predictable

Figure 2.2 - Summer and Winter GB Daily Demand Profiles in 2005/06
Flat Tariffs do provide a view of the future.
Merit Order

- Schedule plant by Cost
 - But taking into account Constraints
 - Like Speed of change and Transmission
 - Charge SMP

![Diagram showing power generation by hour with various energy sources: Gas and Coal (55%), Peakers/Demand Programs (6%), Hydro (15%), Imports (11%), Renewables (5%), Nuclear (8%).]
NETA / BETTA Evolution of Markets

- Well-ahead Bilateral and Exchange **Wholesale** Trading between GenCos and Retailers
 - Scope for long term contracts?
 - Trading result should be SMP, but costs not revealed
- “Gate closure” when SO notified of contracts and despatch plans.
 - How far ahead? 1 – 1.5 hours. SO to plan reserve etc.
- BM (Balancing Mechanism) for near real time and balancing trading
 - System Operator buys or sells using BM bids & offers
 - Almost exclusively from large Generators
 - Costs passed to settlement
- Settlement amongst retailers “deemed” by “profiles” of statistically average consumers. Not actually measured
- NETA (New Electricity Trading Arrangements), extended to (BETTA) British Electricity Transfer and Trading Arrangements
Issues with BETTA

- No reliable “Spot Price” or Index – no long term contracts
- Retailers load (inevitably) differs from predictions (and so contracts), so they face unpredictable (and unmanageable) BM costs (to profit of generators)
- Favours despatchable generation & assumes predictable loads
- So Vertical integration (generators buy retailers & consolidate), and VILE Oligopoly
- Rewards market trading skills – bankrupt inflexible nuclear
- Retail competition leads to explosion of (incomprehensible) retail tariffs (bamboozlement)
- Renewable generation disadvantaged because uncontrolled (and harder to predict)
- So subsidised by obligations on Retailers (=regressive tax)
- What about zero (or negative) marginal price?
Feeding Renewable Policy
The New Need for Flexibility

- Much renewable generation is uncontrolled, but can be forecast
 - Wind when windy – forecast horizon 1 – 48 hours
 - Wave when rough – forecast horizon 2 – 48 hours
 - Tidal when flowing – forecast horizon – astronomical
 - Solar when sunny – forecast horizon – minutes to hours
 - Hydro when rainy – forecast horizon – months

- Adds up to high variability – albeit with variable predictability
 - Even with Diversity – of source type and Geography
 - Unlike conventional “despatchable” plant – under System Operator control

What has to become flexible?
The Core Renewables Issue

- System with 30GW average: 60GW peak; 25 GW min
- Target is (say) 50% wind, so average of 15GW
- So 45 GW nameplate. (33% output)
- Peak output 44GW. Minimum output 1GW
- Worst overload: 25GW demand and 44GW supply.
 - Excess of 29GW
- Worst Underload: 60GW demand 1GW supply
 - Flexible generation needed is 59GW
- While extremes are rare, the pricing & operations regime must cope
Flexibility Options

- NOT nuclear – merely intermittent – makes issue worse
- Coal – at a price in CO2 and bills
- Gas – reasonably flexible, and low(ish) capital costs
 - What will be the price of gas?
- Hydroelectricity – only nearly perfect
 - Needs mountains and rain (or snow) – Norway
 - May need pumping
- Demand was considered “inelastic”
 - Nuclear drove Off-peak
There is Flexible Demand

- Wet appliances – flexible deadlines
- Space and Water Heating (and cooling)
 - So long as space is well insulated, so stays warm
 - Gas has inherent storage, so peak demand is cheap
 - Heat pumps can displace gas
- Electric cars. Clearly batteries, but also hydrogen
- Fuel Manufacture. Hydrogen clear candidate, but other hydrocarbons (methanol) feasible
- Probably also peak waste avoidance
 - Floodlighting

Can demand be made to match available generation
The Smart Grid approach

- Make everything intelligent (including you!), and connected to the internet – the Internet of Things and Cloud approach
- So System Operators can monitor and control everything
- But
- Need Aggregators of many users to create Virtual Power Stations for SO
- Aggregators trade your flexibility in wholesale markets
- For discounts to you
- At risk of flat car, dirty dishes, cold water, ruined clothes
 - When you forget to tell them

There is no compelling consumer vision
“Smart” Meter Programme

- Multiple Registers, so more choices of flat tariffs & timing
- HCI – so you are informed (approximately)
- Separate secure network; Fiscal & Privacy demands
 - Remote switch off!
- Universal enrolment even when no flexibility
- Central (monopoly) Data Collection Comms
- Vast cost - £11 billion

VILE Oligopoly further dominates
Smart Prices Approach

Future (planning) Price

FlowCost Meter
- Flow Transducer
- Integration register
 - Quantity Consumed
- Transaction Value Calculator

Expected Future Price (broadcast)

Price (Adjusted to Spot by Frequency)

Bill
Appliance Price Menu

- **Time Now:** 21.30

<table>
<thead>
<tr>
<th>Completion Time</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.40pm tonight</td>
<td>£1.50</td>
</tr>
<tr>
<td>7.00am tomorrow</td>
<td>£0.50</td>
</tr>
<tr>
<td>4.00pm tomorrow</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Reschedule if price exceeds £0.60

Such a price menu is only likely on a summer night, when sun is forecast for the whole day tomorrow.
Car Charging Menu

<table>
<thead>
<tr>
<th></th>
<th>Distance</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00pm this evening</td>
<td>30 miles</td>
<td>£4.50 (30%)</td>
</tr>
<tr>
<td>7.30am tomorrow</td>
<td>50 miles</td>
<td>£4.50 (60%)</td>
</tr>
</tbody>
</table>

- **Reschedule if price exceeds £10.00**

<table>
<thead>
<tr>
<th></th>
<th>Distance</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.30am tomorrow</td>
<td>110 miles</td>
<td>£9.00</td>
</tr>
<tr>
<td>3.00pm tomorrow</td>
<td>110 miles</td>
<td>£7.00</td>
</tr>
<tr>
<td>1.00pm Saturday</td>
<td>110 miles</td>
<td>£3.00</td>
</tr>
</tbody>
</table>
Dynamic Pricing

- Retailers can adjust prices at will and quickly
- Would you trust today’s VILEs to do this fairly?
- A completely new consumer proposition
- How can it be made compatible with Ofgem RMR
 - Or Cameron’s lowest cost
- Special “multi-account” meter to choose the cheapest in real time
Retail Price setting will need to be sophisticated
Key Opportunities

- Low cost broadcast communications
 - Price information passed rapidly to all participants
- Meaningful user transactions
 - Today perhaps £100 p.a. each consumer. More later.
- Can use variable price to pay small generation
- Selective Rollout
 - Flexible users and early adopters
 - Bundled with devices – appliances, cars, heating systems
- Demand can play in BM
 - Guaranteed Demand Response
 - Peak demand reduction – lower costs
Demand Matches Supply

- When Wind (or sun) is forecast, then suppliers will decrease prices
- When prices decrease, then more appliances will run

You (or your appliance) does your Laundry When the Wind is Blowing
Complications

- **Synchronisation**
 - Shock of dishwashers switching together => blackout
 - UCTE (now ENTSO-E) disturbance

- **Market Involvement**
 - “Blocks” of electricity traded for each hour or half hour
 - Although this is not how generation or demand behaves

- **Metering, Charging and Settlement**
 - Vast, inflexible, interlocked, complicated, expensive IT systems
 - And “Smart” metering will make it more so

These are non trivial problems
Fig. 3.1: Average frequency values in Continental Europe, June 2003 and June 2010, Source: Swissgrid
Meter Data Flows & Processes

Current and Smart Approach
Not fit for purpose

<table>
<thead>
<tr>
<th>Time Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>quarter</td>
<td>1</td>
</tr>
<tr>
<td>month</td>
<td>3</td>
</tr>
<tr>
<td>week</td>
<td>13</td>
</tr>
<tr>
<td>day</td>
<td>90</td>
</tr>
<tr>
<td>hour</td>
<td>2,167</td>
</tr>
<tr>
<td>half hour</td>
<td>4,334</td>
</tr>
<tr>
<td>minute</td>
<td>130,032</td>
</tr>
<tr>
<td>second</td>
<td>7,801,920</td>
</tr>
</tbody>
</table>
Settlement

- All contract notifications, BM trades and all wholesale meter readings fed in
- Each half hour all consumption divvied up to retail meters, and allocated to retailers, using
 - Statistical Profiles from of intensely measured samples
 - Historical consumption
 - And adjusted later in the light of actual meter readings
- BM Trades are allocated to retailers using
 - Notified contracts and allocations
 - Deemed allocations
 - Calculated System Buy & Sell Price

The rules are legalistic, bureaucratic, argued about and hard to change
Incentive Impact of Flowcost on Retailer

- Retailer influences a population of devices to reduce load to match contracts – consumers benefit; system benefits
- Settlement deems retailer consumption in settlement period against standard profiles – finds retailer short
- Retailer pays for “extra” consumption
- All other retailers benefit

A perverse incentive. Lose out from “good” behaviour
Some conclusions

- Retail electricity competition
 - Cannot offer useful innovations
 - Cannot encourage demand response
 - Makes everything complicated and very expensive
 - Entrenches generator market power
 - So encourages gas generation and greater emissions

- Smart Meter & Grid
 - Entrenches VILE oligopoly
 - Does not benefit consumers

- Monopoly area retailers (franchised?)
 - Can encourage flexible demand
 - And profit consumers and themselves

EMR rearranges the deckchairs
Thank you

Discussion?

For further collaboration contact david@davidhirst.com
Small Print

• This document presents material designed to support a spoken presentation, and is provided as an *aide memoir* for those who attended the presentation.

• **HSL**, its employees and agents will not be responsible for any loss from the use of, or reliance on the information in this document. In no event will the **HSL** be liable for any special, indirect or consequential damages of any kind, that may result from use of this document as a consequence of any inaccuracies in, or any omissions from, the information which it may contain.

• This document describes concepts and technologies that may be protected by patent awards and filings. HSL will not be liable for any infringement or alleged infringement arising from use of this document.

• Hirst Solutions Limited is a limited company registered in England 4883253. Registered office: 70 Ditchling Road, Brighton BN1 4SG.

• © David Hirst 2013

• This work is licensed under the Creative Commons Attribution-ShareAlike 2.0 UK: England & Wales License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/uk/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.