Reflections on the feasibility of undertaking economic evaluations of medical devices for resource constrained settings

Karin Diaconu, PhD student, Carole Cummins, Senior lecturer

Institute of Applied Health Research
University of Birmingham
Background

- The World Health Organisation: Health Technology Assessment (HTA) systems with regulatory and management frameworks should play a role in Medical Devices and Equipment (MDE) administration and policy-making.

- In Low and Middle Income Countries (LMICS), if present, HTA focus is on safety and clinical effectiveness (2015 Global Survey on HTA)

- We wished to explore the feasibility of HTA in this context using Generalised Cost Effectiveness Analysis (GCEA)

- GCEA is endorsed by the WHO CHOosing Interventions that are Cost Effective (WHO-CHOICE) group
Generalized Cost-Effectiveness Analysis (GCEA)

- Comparison of all potential treatments against a hypothetical null no treatment available
- Scenario is sectoral CEA assuming all funds and resources can be reallocated

Guideline document: Societal perspective Disability-adjusted life-year (DALY)
Annual 3% discount rate of costs & health effects

Tool-set:
PopMod dynamic life-table population model
CostIt template: health facility, regional & program costs
MCLeague stochastic league table simulations
Methods

Purpose: to ‘road-test’ the feasibility of generalized cost-effectiveness analysis in a case study

Success: defined as the ability to construct appropriate economic model and obtain a cost-effectiveness estimate

Judgment draws on *NICE Methods guide (2015)*:
- Strength of underpinning clinical evidence
- Appropriateness of the model, including decision-problem, inputs and assumptions plausibility
- Health service delivery/budget impact implications
Case study: the SIGN intramedullary nail

Orthopaedic surgery:
13-31% surgical need met in Sub-Saharan Africa and South Asia
2.5% of GDP lost output in LMIC economies
Fractures alone 22million years lived with disability 2013
Scarce CE information on orthopaedic surgery suggests comparable to ophthalmic surgery or Caesarean Section

SIGN nail:
Low cost implant for long bone fracture
No power reaming or image intensification
Case study – GCEA of the SIGN intramedullary nail for femur fracture

Perspective: health service (Bill & Melinda Gates Reference Case (BMG-RC))

Time horizon and discounting: Lifetime for DALY, 10 year implementation for costs (WHO-CHOICE/BMG-RC)
3% annual rate to discount health effects and costs

DALY: - age weighted, discounted, Japanese life expectancy
- discounted, Japanese life expectancy
- Japanese life expectancy
- age weighted, discounted, Africa D life expectancy

Societal recommended by WHO-CHOICE, data collection not feasible
Case study – GCEA of the SIGN intramedullary nail for femur fracture

Population: Patients with fracture of the femur shaft, aged 16-65, no contra-indication to surgery

Interventions/Comparators: Surgical and non-surgical interventions *where effectiveness data are available compared to a no-treatment baseline.*

Outcomes: Mortality and fracture union versus mal- and non-union.

Setting: Africa D and Africa E regions (Global Burden of Disease study)
Open Reduction

ORIF-IM: Definitive internal fixation with intramedullary nails

ORIF-P: Definitive external fixation with plates

ORIF-IM following EF: Temporary external fixation and definitive internal fixation with intramedullary nails

Open reduction requires specialised surgical equipment (fluoroscopy)

Closed Reduction

CRIF-IM: Definitive internal fixation with intramedullary nails

CRIF-P: Definitive internal fixation with plates

Traction with cast or brace support

No treatment

- Death
- Union
- Mal- or non-union
Data and sources
AO Foundation Surgical Reference database
Systematic literature search on long bone fixation
Mortality estimates: intramedullary nailing and null from cohort studies, otherwise all-cause mortality following musculoskeletal trauma and surgery (Foote et al 2015)
Costs: systematic literature review, Lancet Commission on Global Surgery Meara 2015, Alibaba (website)

Assumptions (data paucity)
First line treatment only
Outcomes: death, union, mal-union/non-union
Simplified decision tree (eg reaming not included)
Subgroup heterogeneity not considered (type of fracture, injury severity score, violence, traffic regulation)

CHEERS checklist
Cost-effectiveness of alternative interventions in comparison to null scenario and standard care (I$/DALY averted)

<table>
<thead>
<tr>
<th>Regions and Interventions</th>
<th>Cost (I$) per DALY averted</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A D J</td>
<td>D J</td>
<td>J</td>
<td>AW D E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td>Null: no treatment</td>
<td>Comparators: Standard care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traction</td>
<td>-4473</td>
<td>-98</td>
<td>-2549</td>
<td>-5693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIF-IM</td>
<td>914</td>
<td>96</td>
<td>521</td>
<td>1164</td>
<td>644</td>
<td>41</td>
</tr>
<tr>
<td>ORIF-P</td>
<td>903</td>
<td>96</td>
<td>514</td>
<td>1149</td>
<td>634</td>
<td>41</td>
</tr>
<tr>
<td>CRIF-IM</td>
<td>858</td>
<td>80</td>
<td>489</td>
<td>1092</td>
<td>610</td>
<td>38</td>
</tr>
<tr>
<td>ORIF-IM after EF</td>
<td>923</td>
<td>97</td>
<td>526</td>
<td>1175</td>
<td>651</td>
<td>42</td>
</tr>
<tr>
<td>Africa E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td>Null: no treatment</td>
<td>Comparators: Standard care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traction</td>
<td>-676</td>
<td>-15</td>
<td>-385</td>
<td>-858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIF-IM</td>
<td>909</td>
<td>96</td>
<td>518</td>
<td>1153</td>
<td>640</td>
<td>41</td>
</tr>
<tr>
<td>ORIF-P</td>
<td>897</td>
<td>95</td>
<td>511</td>
<td>1138</td>
<td>630</td>
<td>41</td>
</tr>
<tr>
<td>CRIF-IM</td>
<td>853</td>
<td>80</td>
<td>486</td>
<td>1082</td>
<td>607</td>
<td>37</td>
</tr>
<tr>
<td>ORIF-IM after EF</td>
<td>918</td>
<td>96</td>
<td>523</td>
<td>1164</td>
<td>648</td>
<td>41</td>
</tr>
<tr>
<td>Africa D and E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td>Null: no treatment</td>
<td>Comparators: Standard care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traction</td>
<td>-678</td>
<td>-15</td>
<td>-386</td>
<td>-861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIF-IM</td>
<td>911</td>
<td>96</td>
<td>519</td>
<td>1158</td>
<td>642</td>
<td>41</td>
</tr>
<tr>
<td>ORIF-P</td>
<td>900</td>
<td>96</td>
<td>513</td>
<td>1143</td>
<td>632</td>
<td>41</td>
</tr>
<tr>
<td>CRIF-IM</td>
<td>855</td>
<td>80</td>
<td>487</td>
<td>1087</td>
<td>609</td>
<td>37</td>
</tr>
<tr>
<td>ORIF-IM after EF</td>
<td>921</td>
<td>97</td>
<td>525</td>
<td>1170</td>
<td>650</td>
<td>42</td>
</tr>
</tbody>
</table>

Aw=Age weighting, D=discounting, J=Japanese A=Africa life expectancy
Findings: Cost-effectiveness of treatments modelled compared to the $1*GDP$ per capita ($I\$)$ threshold

<table>
<thead>
<tr>
<th>Regions and Interventions</th>
<th>1 * GDP/capita level</th>
<th>1 * GDP/capita level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower quartile</td>
<td>Average</td>
</tr>
<tr>
<td>Estimates Africa D</td>
<td>626.17</td>
<td>3601.73</td>
</tr>
<tr>
<td>Africa D</td>
<td>Comparator: Null: no treatment</td>
<td>Comparator: Traction</td>
</tr>
<tr>
<td>Traction</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>ORIF-IM</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>ORIF-P</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>CRIF-IM</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>ORIF-IM after EF</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Estimates Africa E</td>
<td>554.56</td>
<td>1953.01</td>
</tr>
<tr>
<td>Africa E</td>
<td>Comparator: Null: no treatment</td>
<td>Comparator: Traction</td>
</tr>
<tr>
<td>Traction</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>ORIF-IM</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>ORIF-P</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>CRIF-IM</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>ORIF-IM after EF</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>
Probabilistic sensitivity analysis:

- surgical interventions clustered together
- Predictable given parameter uncertainty

Deterministic sensitivity analysis:

- sensitive to capacity utilization and cost discount rate
Discussion: Case study findings

- CRIF-IM and ORIF-IM after EF are the most cost-effective but not for all countries within the regions considered, highly uncertain
 - CRIF IM – most appropriate for immediate repair/stable patient, didn’t account for patient heterogeneity in full
 - ORIF IM after EF consistent with damage control orthopaedics in the context of violence/RTAs
- Model assumes operation rooms would be solely for orthopaedic use – unrealistic
- Likely not to be affordable (the budget impact should be evaluated according to CHOICE)
- Possible to construct a model but lack of high quality comparative data
Discussion: reflections on feasibility

- Assumptions may not hold:
 - Base case capacity utilisation of 80% unrealistic
 - Cost discounting at 3% at variance with practice (15% bank lending rate for Kenya)
- Comparisons with 1, 2, 3 x GDP per capita not utilised (alternative national adjustments in practice, e.g. 1 x GDP, current nurse salary)
- Improved guidance required on:
 - assessment of data adequacy to prevent futile model development (opportunity cost)
 - Null treatment comparator (potentially useful if no service in place, otherwise assumes mobility of scarce resources)
Barriers to GCEA feasibility:
- IT access and capacity
- Access to:
 - health technology expertise
 - health systems data (ingredients costing)
 - data required to implement societal perspective

BMG-RC better reflected reality of decision-making: GCEA might be preferred but not be deliverable.
Conclusions

- GCEA was feasible in this case study with major modifications but data quality was poor, compromising the findings: little added value?
- The modifications result in an analysis that does not fit with the original decision-making paradigm.
- Both NICE and BMG-RC focus on integration of findings into decision-making paradigms:
 - unclear how findings of this case study could be contextualised with consideration of budget impact and resource release
 - Countries with potential to benefit most may not have appropriate decision-making paradigm
Conclusions continued

- More pragmatic options include:
 - heuristics for prioritization of devices for in-depth consideration
 - Multiple Criteria Decision Analysis
 - marginal programme budgeting
- Accountability for Reasonableness may provide a framework for evaluation of implementation of such methods
- In the case of the SIGN intramedullary nail, GCEA may not be the optimal tool for decision-making
Conclusions continued

- GCEA implementation would be more pragmatic:
 - With better guidance on handling missing data (extrapolation models)
 - Where multi-arm/multi-country trials are available (e.g. multi-country comparison of cholera vaccine doses and hygiene interventions)

- A database of GCEA findings could be particularly useful to direct investment away from dominated interventions.
Acknowledgements

- Karin Diaconu received an EPSRC MATCH IMRC PhD studentship and Carole Cummins received funding from the same source.
- Richard Lilford and Semira Manaseki-Holland contributed to the design of this study.
- Advaith Gummaraju (BMedSci) carried out qualitative research on the implementation of the SIGN nail.
- Deepa Bose (Orthopaedic Consultant, Queen Elizabeth hospital and Secretary of the World Orthopaedic Congress), Chris Lavy (Orthopaedic Surgeon, University of Oxford) provided advice on clinical aspects of the research.