
Max-plus automata and Tropical identities

Laure Daviaud
University of Warwick

Birmingham, 15-11-2017



Matrices over
(N ∪ {−∞},max,+) 0 −∞ −∞
−∞ 1 −∞
−∞ −∞ 0


 0 0 −∞
−∞ −∞ 0
−∞ −∞ 0



Max-plus Automata

b : 0

a, b : 0

b : 0
a : 1 a, b : 0

2/15

Matrices vs machines...



Matrices over
(N ∪ {−∞},max,+) 0 −∞ −∞
−∞ 1 −∞
−∞ −∞ 0


 0 0 −∞
−∞ −∞ 0
−∞ −∞ 0



Max-plus Automata

b : 0

a, b : 0

b : 0
a : 1 a, b : 0

2/15

Matrices vs machines...



Matrices over
(N ∪ {−∞},max,+) 0 −∞ −∞
−∞ 1 −∞
−∞ −∞ 0


 0 0 −∞
−∞ −∞ 0
−∞ −∞ 0



Max-plus Automata

b : 0

a, b : 0

b : 0
a : 1 a, b : 0

2/15

Matrices vs machines...



Finite alphabet A = {a, b}
Set of words A∗: finite sequences of a and b

Check if a word has at least two b’s.

b

a, b

b

a a, b

A word is accepted by the automaton if there is a path labelled by
the word from an initial state to a final state.

In this case [[A]](w) = 0, otherwise [[A]](w) = −∞.

−→ Quantitative extension: Weighted automata [Schützenberger, 61]
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b : 0

a, b : 0

b : 0

a : 1 a, b : 0

Syntax : Non deterministic finite automaton for which each
transition is labelled by a non negative integer (weight).

Semantic : Weight of a run: sum of the weights of the transitions.
A+→N ∪ {−∞}
w 7→ Max of the weights of the accepting runs labelled by w

(−∞ if no such run)

an0ban1b · · · bank+1 7→ max(n1, . . . , nk)
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b : 0

a, b : 0

b : 0

a : 1 a, b : 0

µ(a) =

 0 −∞ −∞
−∞ 1 −∞
−∞ −∞ 0

 µ(b) =

 0 0 −∞
−∞ −∞ 0
−∞ −∞ 0



I =
(
0 −∞ −∞

)
F =

−∞−∞
0


µ(w)i ,j = max of the weights of the runs from i to j labelled by w

[[A]](w) = Iµ(w)F
Dimension = Number of states
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Decidability and complexity

� Equivalence [Krob]

� Boundedness [Simon]

� Determinisation [Kirsten, Klimann, Lombardy, Mairesse, Prieur]

� Minimisation

� ...
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Questions ?



Au [[A]](u)

Av [[A]](v)

= ?

Which pairs of inputs can be distinguished
by a given computational model?
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A natural and fundamental question:



Semiring (N ∪ {−∞},max,+)
[[A]] : A∗ → N ∪ {−∞}

[[A]] : w 7→ max
ρ accepting path

labelled by w

(
ρ1 + ρ2 + · · ·+ ρ|w |

)

C: class of the max-plus automata

1 For all u 6= v , is there A ∈ C which distinguishes u and v?
→ Yes

2 Is there A ∈ C which distinguishes all pairs u 6= v?
→ No

3 Minimal size to distinguish two given input words?
→ ??????
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Given a positive integer n,
are there u 6= v such that

for all max-plus automata A with at most n states:

[[A]](u) = [[A]](v) ?

For matrices:
Given a dimension n, does there exists a non trivial identity for
the semigroup of square matrices of dimension n ?
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A = {a, b}

a : α

b : β

w 7→ α|w |a + β|w |b

Max-plus automata with one state can distinguish words with
different contents (in particular different lengths), and only these
ones.
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If n = 1



There exist pairs of distinct words with the same values for all
automata with at most 3 states...

2 states [Izhakian, Margolis] - words of length 20

3 states [Shitov] - words of length 1795308
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Theorem [Izhakian]
For all n, there exist a pair of distinct words u 6= v such that
for all triangular automata A with at most n states,

[[A]](u) = [[A]](v)

For n = 2, exactly the identities for the bicyclic monoid [D., Johnson,
Kambites]

12/15
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A = {a, b}

a : α2

b : β2

a : α4

b : β4

a : α1

b : β1

a : α3

b : β3

Theorem [D., Johnson] - counter-example to a conjecture of Izhakian

There are two pairs of distinct words of minimal length which
cannot be distinguished by any max-plus automata with two states:

a2b3a3babab3a2 = a2b3ababa3b3a2 and ab3a4baba2b3a = ab3a2baba4b3a
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Let’s go back to automata with 2 states
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A = {a, b}

a : α2

b : β2

a : α4

b : β4

a : α1

b : β1

a : α3

b : β3

First attempt: Restrict the class of automata we have to consider

� R −→ Q −→ Z −→ N
� Complete automaton
� Only one initial and one final states
� Reduce the number of parameters
Second attempt: Give a list of criteria which can be checked
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� First and last blocks
� Block-permutation
� “Counting modulo 2” criteria
� Triangular automata with two states
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