Max-plus automata and Tropical identities

Laure Daviaud
University of Warwick

Birmingham, 15-11-2017

Matrices vs machines...

Matrices vs machines...

Matrices over
$(\mathbb{N} \cup\{-\infty\}, \max ,+)$
$\left(\begin{array}{ccc}0 & -\infty & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & 0\end{array}\right)$
$\left(\begin{array}{ccc}0 & 0 & -\infty \\ -\infty & -\infty & 0 \\ -\infty & -\infty & 0\end{array}\right)$

Matrices vs machines...

Matrices over
$(\mathbb{N} \cup\{-\infty\}, \max ,+)$
Max-plus Automata
$\left(\begin{array}{ccc}0 & -\infty & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & 0\end{array}\right)$
$\left(\begin{array}{ccc}0 & 0 & -\infty \\ -\infty & -\infty & 0 \\ -\infty & -\infty & 0\end{array}\right)$
$a, b: 0$

A very simple machine: Automata

Finite alphabet $A=\{a, b\}$
Set of words A^{*} : finite sequences of a and b

A very simple machine: Automata

Finite alphabet $A=\{a, b\}$
Set of words A^{*} : finite sequences of a and b
Check if a word has at least two b 's.

A very simple machine: Automata

Finite alphabet $A=\{a, b\}$
Set of words A^{*} : finite sequences of a and b
Check if a word has at least two b's.

A very simple machine: Automata

Finite alphabet $A=\{a, b\}$
Set of words A^{*} : finite sequences of a and b
Check if a word has at least two b's.

A word is accepted by the automaton if there is a path labelled by the word from an initial state to a final state.

In this case $\llbracket \mathcal{A} \rrbracket(w)=0$, otherwise $\llbracket \mathcal{A} \rrbracket(w)=-\infty$.

A very simple machine: Automata

Finite alphabet $A=\{a, b\}$
Set of words A^{*} : finite sequences of a and b

Check if a word has at least two b's.

A word is accepted by the automaton if there is a path labelled by the word from an initial state to a final state.

In this case $\llbracket \mathcal{A} \rrbracket(w)=0$, otherwise $\llbracket \mathcal{A} \rrbracket(w)=-\infty$.
\longrightarrow Quantitative extension: Weighted automata [Schützenberger, 61]

Max-plus automata

Max-plus automata

Syntax: Non deterministic finite automaton for which each transition is labelled by a non negative integer (weight).

Max-plus automata

Syntax: Non deterministic finite automaton for which each transition is labelled by a non negative integer (weight).

Semantic: Weight of a run: sum of the weights of the transitions. $A^{+} \rightarrow \mathbb{N} \cup\{-\infty\}$
$w \mapsto$ Max of the weights of the accepting runs labelled by w ($-\infty$ if no such run)

Max-plus automata

Syntax: Non deterministic finite automaton for which each transition is labelled by a non negative integer (weight).

Semantic: Weight of a run: sum of the weights of the transitions. $A^{+} \rightarrow \mathbb{N} \cup\{-\infty\}$
$w \mapsto$ Max of the weights of the accepting runs labelled by w ($-\infty$ if no such run)

$$
a^{n_{0}} b a^{n_{1}} b \cdots b a^{n_{k+1}} \mapsto \max \left(n_{1}, \ldots, n_{k}\right)
$$

Matrix representation

Matrix representation

Matrix representation

$$
\begin{aligned}
& \text { } \mu(a)=\left(\begin{array}{ccc}
a, b: 0 & b: 0 \\
-\infty & -\infty & -\infty \\
-\infty & 1 & -\infty \\
-\infty & -\infty & 0
\end{array}\right) \quad \mu(b)=\left(\begin{array}{ccc}
0 & 0 & -\infty \\
-\infty & -\infty & 0 \\
-\infty & -\infty & 0
\end{array}\right)
\end{aligned}
$$

Matrix representation

$$
\begin{gathered}
\mu(a)=\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
-\infty & 1 & -\infty \\
-\infty & -\infty & 0
\end{array}\right) \quad \mu(b)=\left(\begin{array}{ccc}
0 & 0 & -\infty \\
-\infty & -\infty & 0 \\
-\infty & -\infty & 0
\end{array}\right) \\
l=\left(\begin{array}{lll}
0 & -\infty & -\infty
\end{array}\right) \quad F=\left(\begin{array}{c}
-\infty \\
-\infty \\
0
\end{array}\right)
\end{gathered}
$$

Matrix representation

$$
\begin{aligned}
& \begin{array}{lll}
a, b: 0 & a: 1 & a, b: 0 \\
b: 0 & b: 0
\end{array} \\
& \mu(a)=\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
-\infty & 1 & -\infty \\
-\infty & -\infty & 0
\end{array}\right) \quad \mu(b)=\left(\begin{array}{ccc}
0 & 0 & -\infty \\
-\infty & -\infty & 0 \\
-\infty & -\infty & 0
\end{array}\right) \\
& I=\left(\begin{array}{lll}
0 & -\infty & -\infty
\end{array}\right) \quad F=\left(\begin{array}{c}
-\infty \\
-\infty \\
0
\end{array}\right)
\end{aligned}
$$

$\mu(w)_{i, j}=\max$ of the weights of the runs from i to j labelled by w

$$
\llbracket \mathcal{A} \rrbracket(w)=I \mu(w) F
$$

Matrix representation

$$
\begin{aligned}
& \mu(a)=\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
-\infty & 1 & -\infty \\
-\infty & -\infty & 0
\end{array}\right) \quad \mu(b)=\left(\begin{array}{ccc}
0 & 0 & -\infty \\
-\infty & -\infty & 0 \\
-\infty & -\infty & 0
\end{array}\right) \\
& I=\left(\begin{array}{lll}
0 & -\infty & -\infty
\end{array}\right) \quad F=\left(\begin{array}{c}
-\infty \\
-\infty \\
0
\end{array}\right)
\end{aligned}
$$

$\mu(w)_{i, j}=\max$ of the weights of the runs from i to j labelled by w

$$
\llbracket \mathcal{A} \rrbracket(w)=I \mu(w) F
$$

Dimension $=$ Number of states

Questions?

Decidability and complexity

- Equivalence [Krob]
- Boundedness [Simon]
. Determinisation [Kirsten, Klimann, Lombardy, Mairesse, Prieur]
- Minimisation
- ...

A natural and fundamental question:

Which pairs of inputs can be distinguished by a given computational model?

Distinguishing words

Semiring $(\mathbb{N} \cup\{-\infty\}$, max,+)
$\llbracket \mathcal{A} \rrbracket: A^{*} \rightarrow \mathbb{N} \cup\{-\infty\}$

$$
\llbracket \mathcal{A} \rrbracket: w \mapsto \max _{\substack{\rho \text { accepting path } \\ \text { labelled bv } w}}\left(\rho_{1}+\rho_{2}+\cdots+\rho_{|w|}\right)
$$

\mathcal{C} : class of the max-plus automata

Distinguishing words

Semiring $(\mathbb{N} \cup\{-\infty\}$, max,+)
$\llbracket \mathcal{A} \rrbracket: A^{*} \rightarrow \mathbb{N} \cup\{-\infty\}$

$$
\llbracket \mathcal{A} \rrbracket: w \mapsto \max _{\substack{\rho \text { accepting path } \\ \text { labelled by } w}}\left(\rho_{1}+\rho_{2}+\cdots+\rho_{|w|}\right)
$$

\mathcal{C} : class of the max-plus automata
1 For all $u \neq v$, is there $\mathcal{A} \in \mathcal{C}$ which distinguishes u and v ? \rightarrow Yes

Distinguishing words

Semiring $(\mathbb{N} \cup\{-\infty\}$, max,+)
$\llbracket \mathcal{A} \rrbracket: A^{*} \rightarrow \mathbb{N} \cup\{-\infty\}$

$$
\llbracket \mathcal{A} \rrbracket: w \mapsto \max _{\substack{\rho \text { accepting path } \\ \text { labelled by } w}}\left(\rho_{1}+\rho_{2}+\cdots+\rho_{|w|}\right)
$$

\mathcal{C} : class of the max-plus automata
1 For all $u \neq v$, is there $\mathcal{A} \in \mathcal{C}$ which distinguishes u and v ? \rightarrow Yes

2 Is there $\mathcal{A} \in \mathcal{C}$ which distinguishes all pairs $u \neq v$? \rightarrow No

Distinguishing words

Semiring $(\mathbb{N} \cup\{-\infty\}$, max,+)
$\llbracket \mathcal{A} \rrbracket: A^{*} \rightarrow \mathbb{N} \cup\{-\infty\}$

$$
\llbracket \mathcal{A} \rrbracket: w \mapsto \max _{\substack{\rho \text { accepting path } \\ \text { labelled by } w}}\left(\rho_{1}+\rho_{2}+\cdots+\rho_{|w|}\right)
$$

\mathcal{C} : class of the max-plus automata
1 For all $u \neq v$, is there $\mathcal{A} \in \mathcal{C}$ which distinguishes u and v ? \rightarrow Yes

2 Is there $\mathcal{A} \in \mathcal{C}$ which distinguishes all pairs $u \neq v$? \rightarrow No

3 Minimal size to distinguish two given input words?

$$
\rightarrow \text { ?????? }
$$

Given a positive integer n, are there $u \neq v$ such that for all max-plus automata \mathcal{A} with at most n states:

$$
\llbracket \mathcal{A} \rrbracket(u)=\llbracket \mathcal{A} \rrbracket(v) \quad ?
$$

Given a positive integer n, are there $u \neq v$ such that for all max-plus automata \mathcal{A} with at most n states:

$$
\llbracket \mathcal{A} \rrbracket(u)=\llbracket \mathcal{A} \rrbracket(v) \quad ?
$$

For matrices:
Given a dimension n, does there exists a non trivial identity for the semigroup of square matrices of dimension n ?

If $n=1$

$$
A=\{a, b\}
$$

If $n=1$

$$
A=\{a, b\}
$$

$$
w \mapsto \alpha|w|_{a}+\beta|w|_{b}
$$

$$
A=\{a, b\}
$$

$$
w \mapsto \alpha|w|_{a}+\beta|w|_{b}
$$

Max-plus automata with one state can distinguish words with different contents (in particular different lengths), and only these ones.

If $n=2$ or $n=3$

There exist pairs of distinct words with the same values for all automata with at most 3 states...

```
If }n=2\mathrm{ or }n=
```

There exist pairs of distinct words with the same values for all automata with at most 3 states...

2 states [Izhakian, Margolis] - words of length 20

```
If }n=2\mathrm{ or }n=
```

There exist pairs of distinct words with the same values for all automata with at most 3 states...

2 states [Izhakian, Margolis] - words of length 20
3 states [Shitov] - words of length 1795308

Triangular automata

Triangular automata

Theorem [Izhakian]
For all n, there exist a pair of distinct words $u \neq v$ such that for all triangular automata \mathcal{A} with at most n states,

$$
\llbracket \mathcal{A} \rrbracket(u)=\llbracket \mathcal{A} \rrbracket(v)
$$

Triangular automata

Theorem [Izhakian]
For all n, there exist a pair of distinct words $u \neq v$ such that for all triangular automata \mathcal{A} with at most n states,

$$
\llbracket \mathcal{A} \rrbracket(u)=\llbracket \mathcal{A} \rrbracket(v)
$$

For $n=2$, exactly the identities for the bicyclic monoid [D., Johnson, Kambites]

Let's go back to automata with 2 states

$$
A=\{a, b\}
$$

Let's go back to automata with 2 states

$A=\{a, b\}$

Theorem [D., Johnson] - counter-example to a conjecture of Izhakian There are two pairs of distinct words of minimal length which cannot be distinguished by any max-plus automata with two states:

$$
a^{2} b^{3} a^{3} b a b a b^{3} a^{2}=a^{2} b^{3} a b a b a^{3} b^{3} a^{2} \text { and } a b^{3} a^{4} b a b a^{2} b^{3} a=a b^{3} a^{2} b a b a^{4} b^{3} a
$$

Let's go back to automata with 2 states

$A=\{a, b\}$

Let's go back to automata with 2 states

$A=\{a, b\}$

First attempt: Restrict the class of automata we have to consider

Let's go back to automata with 2 states

$A=\{a, b\}$

First attempt: Restrict the class of automata we have to consider
$\cdot \mathbb{R} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{N}$

Let's go back to automata with 2 states

$A=\{a, b\}$

First attempt: Restrict the class of automata we have to consider
. $\mathbb{R} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{N}$

- Complete automaton

Let's go back to automata with 2 states

$A=\{a, b\}$

First attempt: Restrict the class of automata we have to consider
. $\mathbb{R} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{N}$

- Complete automaton
. Only one initial and one final states

Let's go back to automata with 2 states

$A=\{a, b\}$

First attempt: Restrict the class of automata we have to consider
. $\mathbb{R} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{N}$

- Complete automaton
. Only one initial and one final states
- Reduce the number of parameters

Let's go back to automata with 2 states

$A=\{a, b\}$

First attempt: Restrict the class of automata we have to consider
. $\mathbb{R} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{N}$

- Complete automaton
. Only one initial and one final states
- Reduce the number of parameters

Second attempt: Give a list of criteria which can be checked

List of criteria

List of criteria

. First and last blocks

List of criteria

. First and last blocks
. Block-permutation

List of criteria

. First and last blocks

- Block-permutation
. "Counting modulo 2" criteria
Number of a's after an even number of b 's

List of criteria

- First and last blocks
- Block-permutation
- "Counting modulo 2" criteria
- Triangular automata with two states

