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Introduction Tropical Optimization

Introduction: Tropical Optimization

I Tropical (idempotent) mathematics focuses on the theory and
applications of semirings with idempotent addition

I The tropical optimization problems are formulated and solved
within the framework of tropical mathematics

I Many problems have objective functions defined on vectors over
idempotent semifields (semirings with multiplicative inverses)

I The problems find applications in many areas to provide new
efficient solutions to various old and novel problems in

I project scheduling,
I location analysis,
I transportation networks,
I decision making,
I discrete event systems
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Idempotent Algebra Definitions and Notation

Idempotent Algebra: Definitions and Notation

Idempotent Semifield

I Idempotent semifield: the algebraic system 〈X,0,1,⊕,⊗〉
I The binary operations ⊕ and ⊗ are associative and commutative
I The carrier set X has neutral elements, zero 0 and identity 1

I Multiplication ⊗ is distributive over addition
I Addition ⊕ is idempotent: x⊕ x = x for all x ∈ X

I Multiplication ⊗ is invertible: for each nonzero x ∈ X , there exists
an inverse x−1 ∈ X such that x⊗ x−1 = 1

I Algebraic completeness: the equation xp = a is solvable for any
a ∈ X and integer p (there exist powers with rational exponents)

I Notational convention: the multiplication sign ⊗ will be omitted
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Idempotent Algebra Definitions and Notation

Semifield Rmax,× (Max-Algebra)

I Definition: Rmax,× = 〈R+, 0, 1,max,×〉 with R+ = {x ∈ R|x ≥ 0}
I Carrier set: X = R+ ; zero and identity: 0 = 0 , 1 = 1

I Binary operations: ⊕ = max and ⊗ = ×
I Idempotent addition: x⊕ x = max(x, x) = x for all x ∈ R+

I Multiplicative inverse: for each x ∈ R+ \ {0} , there exists x−1

I Power notation: xy is routinely defined for each x, y ∈ R+

I Further examples of real idempotent semifields:

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉,
Rmin,+ = 〈R ∪ {+∞},+∞, 0,min,+〉,
Rmin,× = 〈R+ ∪ {+∞},+∞, 1,min,×〉
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Idempotent Algebra Definitions and Notation

Vector and Matrix Algebra Over Rmax,×

I The scalar idempotent semifield Rmax,× is routinely extended to
idempotent systems of vectors in Rn

+ and of matrices in Rm×n
+

I The matrix and vector operations follow the standard entry-wise
formulas with the addition ⊕ = max and the multiplication ⊗ = ×

I For any vectors a = (ai) and b = (bi) in Rn
+ , and a scalar

x ∈ R+ , the vector operations follow the conventional rules

{a⊕ b}i = ai ⊕ bi, {xa}i = xai

I For any matrices A = (aij) ∈ Rm×n
+ , B = (bij) ∈ Rm×n

+ and
C = (cij) ∈ Rn×l

+ , and x ∈ R+ , the matrix operations are given by

{A⊕B}ij = aij ⊕ bij , {AC}ij =
n⊕

k=1

aikckj , {xA}ij = xaij
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Idempotent Algebra Definitions and Notation

Vector and Matrix Algebra Over Rmax,×

I All vectors are column vectors, unless otherwise specified
I The zero vector and vector of ones:

0 = (0, . . . , 0)T , 1 = (1, . . . , 1)T

I Multiplicative conjugate transposition of a nonzero column vector
x = (xi) is the row vector x− = (x−i ) , where x−i = x−1

i if xi 6= 0 ,
and x−i = 0 otherwise

I The zero matrix and identity matrix:
0 = (0) , I = diag(1, . . . , 1)

I Multiplicative conjugate transposition of a nonzero matrix
A = (aij) is the matrix A− = (a−ij) , where a−ij = a−1

ji if aji 6= 0 ,
and a−ij = 0 otherwise

I Integer powers of square matrices:

A0 = I, Ap = Ap−1A = AAp−1, p ≥ 1
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Idempotent Algebra Definitions and Notation

Square Matrices

I Trace: the trace of a matrix A = (aij) ∈ Rn×n
+ is given by

trA = a11 ⊕ · · · ⊕ ann

I Eigenvalue: a scalar λ such that there is a vector x 6= 0 to satisfy

Ax = λx

I Spectral radius: the maximum eigenvalue given by

ρ = trA⊕ · · · ⊕ tr1/m(Am)

I Asterate: the asterate operator (the Kleene star) is given by

A∗ = I ⊕A⊕ · · · ⊕An−1, ρ ≤ 1
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Tropical Optimization Problems Solution Examples

Tropical Optimization Problems: Solution Examples

Problem with Pseudo-Quadratic Objective
Given a matrix A ∈ Rn×n

+ , find positive vectors x ∈ Rn
+ that solve the

problem
min
x>0

x−Ax

Theorem
Let A be a matrix with tropical spectral radius λ > 0 , and denote
B = (λ−1A)∗ . Then,

I the minimum of x−Ax is equal to λ ;
I all positive solutions are given by

x = Bu, u > 0
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Tropical Optimization Problems Solution Examples

Maximization Problem with Hilbert (Range, Span) Seminorm
Given a matrix B ∈ Rn×m

+ , find positive vectors u ∈ Rl
+ that solve the

problems

max
u>0

1TBu(Bu)−1 min
u>0

1TBu(Bu)−1

Lemma
Let B be a positive matrix, and Blk be the matrix derived from
B = (bk)mk=1 by fixing the entry blk and replacing the others by 0 .

I The maximum of 1TBu(Bu)−1 is equal to ∆ = 1TBB−1

I All positive solutions are given by

u = (I ⊕B−
lkB)v, v > 0,

where the indices k and l satisfy the condition 1Tbkb
−1
lk = ∆
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Tropical Optimization Problems Solution Examples

Minimization Problem with Hilbert (Range, Span) Seminorm

Lemma
Let B be a matrix without zero rows and columns.

I The minimum of 1TBu(Bu)−1 is equal to ∆ = (B(1TB)−)−1 .
I Denote by B̂ be the sparsified matrix with entries:

b̂ij =

{
0, if bij < ∆−11Tbj ;

bij , otherwise.

Let B be the set of matrices obtained from B̂ by fixing one
nonzero entry in each row and setting the others to 0 .
Then, all positive solutions are given by

u = (I ⊕∆−1B−
1 11

TB)v, v > 0, B1 ∈ B
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Analytical Hierarchy Process Traditional Approach

Analytical Hierarchy Process: Traditional Approach

Pairwise Comparison
I Given m criteria and n choices, the problem is to find priorities of

choices from pairwise comparisons of criteria and of choices
I Outcome of comparison is given by a matrix A = (aij) , where aij

shows the relative priority of choice i over j
I Note that aij = 1/aji > 0

I Scale (Saaty, 2005):
aij Meaning
1 i equally important as j
3 i moderately more important than j
5 i strongly more important than j
7 i very strongly more important than j
9 i extremely more important than j
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Analytical Hierarchy Process Traditional Approach

Consistency

I A pairwise comparison matrix A is consistent if its entries are
transitive to satisfy the condition aij = aikakj for all i, j, k

I Each consistent matrix A has unit rank and is given by
A = xxT , where x is a positive vector that entirely specifies A

I If a comparison matrix A is consistent, the vector x represents,
up to a positive factor, the individual priorities of choices

I Since the comparison matrices are usually inconsistent, a problem
arises to approximate these matrices by consistent matrices
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Analytical Hierarchy Process Traditional Approach

Principal Eigenvector Method and Weighted Sum Solution

I The traditional AHP uses approximation of pairwise comparison
matrices by consistent matrices with the principal eigenvectors

I Let A0 be a matrix of pairwise comparison of criteria, and
Ak be a matrix of pairwise comparison of choices for criterion k

I Let w = (wk)mk=1 be the principal eigenvector of A0 :
the vector of priorities (weights) for criteria

I Let xk be the principal eigenvector of Ak :
the vector of priorities of choices with respect to criterion k

I The resulting vector x of priorities of choices is calculated as

x =

m∑
k=1

wkxk
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Analytical Hierarchy Process Minimax approximation based AHP

Minimax approximation based AHP

Log-Chebyshev Approximation of Comparison Matrices

I Consider the problem to approximate a pairwise comparison
matrix A = (aij) by a consistent matrix X = (xij) , where

aij = 1/aji, xij = xi/xj

I The log-Chebyshev distance between A and X is defined as

max
1≤i,j≤n

| log aij − log xij | = log max
1≤i,j≤n

max

(
aij
xij

,
xij
aij

)
I Minimizing the log-Chebyshev distance is equivalent to minimizing

max
1≤i,j≤n

max

(
aij
xij

,
xij
aij

)
= max

1≤i,j≤n
max

(
aijxj
xi

,
ajixi
xj

)
= max

1≤i,j≤n

aijxj
xi
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Analytical Hierarchy Process Minimax approximation based AHP

Approximation as Tropical Optimization Problem

I Tropical representation of the objective function in terms of Rmax,×

max
1≤i,j≤n

aijxj
xi

=
⊕

1≤i,j≤n

x−1
i aijxj = x−Ax

I In the framework of the idempotent semifield Rmax,× , the minimax
approximation problem takes the form

min
x>0

x−Ax

Theorem
Let A be a pairwise comparison matrix with tropical spectral radius λ ,
and B = (λ−1A)∗ . Then,

I all priority vectors are given by

x = Bu, u > 0
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Analytical Hierarchy Process Minimax approximation based AHP

Weighted Approximation Under Several Criteria

I Simultaneous minimax approximation of the matrices Ak = (a
(k)
ij )

with weights wk > 0 by a consistent matrix involves minimizing

max
1≤k≤m

wk

(
max

1≤i,j≤n
(a

(k)
ij xj)/xi

)
= max

1≤i,j≤n
max

1≤k≤m
(wka

(k)
ij )xj/xi.

I In terms of Rmax,× , the approximation problem takes the form

min
x>0

x−(w1A1 ⊕ · · · ⊕ wmAm)x

Theorem
Let A1, . . . ,Am be comparison matrices, w1, . . . , wm be weights,
C = w1A1 ⊕ · · · ⊕ wmAm be a matrix with tropical spectral radius µ ,
and B = (µ−1C)∗ . Then,

I all priority vectors are given by

x = Bu, u > 0
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Analytical Hierarchy Process Minimax approximation based AHP

Most and Least Differentiating Priority Vectors

I The priority vectors x = Bu obtained by the minimax
approximation may be not unique up to a positive factor

I Further analysis is then needed to reduce to a few representative
solutions, such as some “best” and “worst” priority vectors

I One can take two vectors that most and least differentiate
between the choices with the highest and lowest priorities

I The most and least differentiating priority vectors are obtained by
maximizing and minimizing the contrast ratio

max
1≤i≤n

xi/ min
1≤i≤n

xi = max
1≤i≤n

xi × max
1≤i≤n

x−1
i

I In terms of the semifield Rmax,× , the contrast ratio is written as

1Txx−1 = 1TBu(Bu)−1
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Analytical Hierarchy Process Minimax approximation based AHP

Most Differentiating Priority Vector

I In terms of the semifield Rmax,× , the problem to maximize the
contrast ratio is written as

max
u>0

1TBu(Bu)−1

I If u is a solution, then x = Bu is the most differentiating vector
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Analytical Hierarchy Process Minimax approximation based AHP

Most Differentiating Priority Vector

Theorem
Let B be a matrix defining a set of priority vectors x = Bu , u > 0 ,
and Blk be the matrix obtained from B = (bj) by fixing the entry blk
and replacing the others by 0 .

I The maximum of 1TBu(Bu)−1 is equal to ∆ = 1TBB−1

I The most differentiating priority vectors are given by

x = B(I ⊕B−
lkB)v, v > 0,

where the indices k and l satisfy the condition 1Tbkb
−1
lk = ∆
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Analytical Hierarchy Process Minimax approximation based AHP

Least Differentiating Priority Vector

I In terms of the semifield Rmax,× , the problem to minimize the
contrast ratio is written as

min
u>0

1TBu(Bu)−1

I If u is a solution, then x = Bu is the least differentiating vector
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Analytical Hierarchy Process Minimax approximation based AHP

Least Differentiating Priority Vector

Theorem
Let B be a matrix defining a set of priority vectors x = Bu , u > 0 .

I The minimum of 1TBu(Bu)−1 is equal to ∆ = (B(1TB)−)−1 .
I Denote by B̂ be the sparsified matrix with entries:

b̂ij =

{
0, if bij < ∆−11Tbj ;

bij , otherwise.

Let B be the set of matrices obtained from B̂ by fixing one
nonzero entry in each row and setting the others to 0 .
Then the least differentiating priority vectors are given by

u = (I ⊕∆−1B−
1 11

TB)v, v > 0, B1 ∈ B
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Illustrative Example Selecting Plan for Vacation

Illustrative Example: Selecting Plan for Vacation

Problem: Select a Place to Spend a Week (Saaty, 1977)

I Five criteria: (1) cost of the trip from Philadelphia, (2) sight-seeing
opportunities, (3) entertainment (doing things), (4) way of travel,
(5) eating places; with the criteria comparison matrix

A0 =


1 1/5 1/5 1 1/3
5 1 1/5 1/5 1
5 5 1 1/5 1
1 5 5 1 5
3 1 1 1/5 1


I Four places: (1) short trips from Philadelphia (i.e., New York,

Washington, Atlantic City, New Hope, etc.), (2) Quebec,
(3) Denver, (4) California
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Illustrative Example Selecting Plan for Vacation

Problem (cont.)

I Pairwise comparison matrices of places with respect to criteria

A1 =


1 3 7 9

1/3 1 6 7
1/7 1/6 1 3
1/9 1/7 1/3 1

 , A2 =


1 1/5 1/6 1/4
5 1 2 4
6 1/2 1 6
4 1/4 1/6 1

 ,

A3 =


1 7 7 1/2

1/7 1 1 1/7
1/7 1 1 1/7
2 7 7 1

 , A4 =


1 4 1/4 1/3

1/4 1 1/2 3
4 2 1 3
3 1/3 1/3 1

 ,

A5 =


1 1 7 4
1 1 6 3

1/7 1/6 1 1/4
1/4 1/3 4 1
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Illustrative Example Selecting Plan for Vacation

Solution: Evaluating Priority Vector (Weights) for Criteria

I The tropical spectral radius of the comparison matrix A0

λ = (a14a43a32a21)
1/4 = 53/4

I The Kleene star of the matrix λ−1A0

(λ−1A0)
∗ = I ⊕ λ−1A0 ⊕ λ−2A2

0 ⊕ λ−3A3
0 ⊕ λ−4A4

0

=


1 5−1/4 5−1/2 5−3/4 5−1/2

51/4 1 5−1/4 5−1/2 5−1/4

51/2 51/4 1 5−1/4 1

53/4 51/2 51/4 1 51/4

3 · 5−3/4 3 · 5−1 3 · 5−5/4 3 · 5−3/2 3 · 5−5/4


I The priority (weight) vector for criteria (pseudo-quadratic problem)

w = (1, 51/4, 51/2, 53/4, 3 · 5−3/4)
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Illustrative Example Selecting Plan for Vacation

Derivation of All Priority Vectors for Places

I The weighted combination of comparison matrices of places

C = A1 ⊕ 51/4A2 ⊕ 51/2A3 ⊕ 53/4A4 ⊕ (3 · 5−3/4)A5

=


53/4 7 · 51/2 7 · 51/2 9

55/4 53/4 6 3 · 53/4
4 · 53/4 2 · 53/4 53/4 3 · 53/4
3 · 53/4 7 · 51/2 7 · 51/2 53/4


I The tropical spectral radius of matrix C

µ = (c13c31)
1/2 = 2 · 55/871/2
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Illustrative Example Selecting Plan for Vacation

Derivation of All Priority Vectors for Places (cont.)

I The Kleene star of matrix µ−1C

(µ−1C)∗ = I ⊕ µ−1C ⊕ µ−2C2 ⊕ µ−3C3

=


1 r/4 r/4 3/4

3/r 1 3/4 3/r
4/r 1 1 3/r
1 r/4 r/4 1

 , r = 2 · 71/25−1/8 ≈ 4.33

I All solution vectors (pseudo-quadratic problem)

x = Bu, B =


1 r/4 3/4

3/r 1 3/r
4/r 1 3/r
1 r/4 1

 , u > 0
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Illustrative Example Selecting Plan for Vacation

Evaluation of Most Differentiating Solutions

I The vectors with maximum differentiation between choices of
lowest and highest priorities (maximization of Hilbert seminorm)

x1 =


1

3/r
4/r
1

u, x2 =


3/4
3/r
3/r
1

 v, u, v > 0, r = 2·71/25−1/8 ≈ 4.33

I Examples of vectors with u = v = 1

x1 ≈ (1.00, 0.69, 0.92, 1.00)T , x2 ≈ (0.75, 0.69, 0.69, 1.00)T

I The priority order of places according to the vectors

(4) ≡ (1) � (3) � (2), (4) � (1) � (3) ≡ (2)
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Illustrative Example Selecting Plan for Vacation

Evaluation of Least Differentiating Solutions

I The vectors with minimum differentiation between choices of
lowest and highest priorities (minimization of Hilbert seminorm)

x1 =


1

4/r
4/r
1

u, u > 0, r = 2 · 71/25−1/8 ≈ 4.33

I Example of vectors with u = 1 and related priority order

x1 ≈ (1.00, 0.92, 0.92, 1.00)T , (4) ≡ (1) � (3) ≡ (2)

I Combined new orders versus order by (Saaty, 1977)

NEW: (4) � (1) � (3) � (2) OLD: (1) � (3) � (4) � (2)
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Concluding Remarks

Concluding Remarks

I We have proposed a new implementation of the AHP method,
based on minimax approximation and tropical optimization

I The new AHP implementation uses log-Chebyshev matrix
approximation instead of the principal eigenvector method

I The weights of criteria are incorporated into the evaluation of the
priorities of choices rather then used to form the result directly
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Concluding Remarks

Concluding Remarks

I Since the solution obtained is usually non-unique, a technique has
been proposed to find two representative priority vectors

I As such solutions, those vectors are taken which most and least
differentiate between choices with the highest and lowest priorities

I The above problems have been formulated in the framework of
tropical mathematics, and solved as tropical optimization problems

I Exact solutions to the problems have been given in a compact
vector form ready for further analysis and practical implementation
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