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Low-Rank Approximate Factorization

Given a matrix A ∈ Rn×m, an approximate factorization of rank k
is a pair B ∈ Rn×k and C ∈ Rk×m, such that

A ≈ BC .

Such approximate factorizations are used throughout applied
mathematics in...

Compression

Visualization/interpretation

Matrix completion/prediction

Huge number of variations

Constrains on factor matrices e.g. orthogonal, triangular,
non-negative...

Measure of closeness e.g. Frobenius norm, KL divergence...

What about the matrix-matrix product itself?



Tropical Semirings

Tropical algebra concerns any semiring whose ‘addition’ operation
is max or min.

E.g. the min-plus semiring Rmin+ = [R ∪ {∞},⊕,⊗], where

a⊕ b = min{a, b}, a⊗ b = a + b, ∀ a, b ∈ Rmin+.

Min-plus matrix multiplication is defined in analogy to the classical
case. For A ∈ Rn×m

min+ and B ∈ Rm×d
min+ we have A⊗ B ∈ Rn×d

min+,
with

(A⊗ B)ij =
m⊕

k=1

aik ⊗ bkj =
m

min
k=1

(aik + bkj).

For example 0 2 3
∞ 0 0
0 1 0

⊗
 0 2 3
∞ 0 0
0 1 0

 =

 0 2 2
0 0 0
0 1 0

 .



Paths through graphs viewpoint
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For A ∈ Rn×n
min +, precedence graph Γ(A).

Proposition(
A⊗`

)
ij

= the weight of the minimally weighted path of length `, through Γ(A),

from v(i) to v(j).



Paths through graphs viewpoint

 1 1
0 1
1 0

⊗ [ 1 0 1
1 1 0

]
=

 2 1 1
· 0 1
· · 0
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For A ∈ Rn×d
min+, precedence bipartite graph B(A).

Proposition(
A⊗ AT

)
ij

= the weight of the minimally weighted path (of length

2) through B(A) from v(i) to v(j).



Min-Plus Low-Rank Matrix Approximation

Min-plus low-rank matrix approximation

For M ∈ Rn×m
min+ and 0 < k ≤ min{n,m}, we seek

min
A∈Rn×k

min +, B∈Rk×m
min +

‖M − A⊗ B‖2F .

Network interpretation

Given a network with shortest path distances M build a new
network with k ‘transport hub’ vertices whose shortest path
distances approximate M.

Geometrical interpretation

Given m points m1, . . . ,mm ∈ Rn
max find a k-dimensional min-plus

linear space C to minimize

m∑
i=1

dist(mi − C )2.



Min-Plus Low-Rank Matrix Approximation

Figure: Original image taken from
Network Rail

J. Hook.
Min-plus algebraic low rank
matrix approximation: a
new method for revealing
structure in networks.
arXiv:1708.06552.

J. Hook.
Linear regression over the
max-plus semiring:
algorithms and applications.
arXiv:1712.03499.



Column space geometry viewpoint

 0 0 0 0
0 4 5 8
0 3 2 1

 ≈
 0 0

0.5 8.5
−1.5 2.5

⊗ [ 0.5 4 4.5 ∞
0 0 −0.25 −0.67

]

=

 0 0 −0.25 −0.67
1 4.5 5 7.83
−1 2.5 2.25 1.83
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Max-Times Semiring

The max-times semiring Rmax× = [R+,�,�], where

a� b = max{a, b}, a� b = a× b, ∀ a, b ∈ Rmax×.

Max-times matrix multiplication is defined in analogy to the
classical case. For A ∈ Rn×m

max× and B ∈ Rm×d
max× we have

A� B ∈ Rn×d
max×, with

(A� B)ij =
m

�
k=1

aik � bkj =
m

max
k=1

(aikbkj).

For example

 0 100 100
0 1 1
1 10 1

�

 0 100 100
0 1 1
1 10 1

 =

 100 1000 100
1 10 1
1 100 100

 .



Max-Times Low-Rank Approximation

Max-Times Low-Rank Approximation

Given an input matrix A ∈ Rmax× and an integer k > 0, find
B ∈ Rmax×R

n×k
+ , C ∈ Rmax×R

k×m
+ , such that

‖A− B � C‖F

is minimized.

S. Karaev and P. Miettinen.
Capricorn: An Algorithm for Subtropical Matrix Factorization.
SIAM International Conference on Data Mining 2016.

S. Karaev and P. Miettinen.
Cancer: Another Algorithm for Subtropical Matrix
Factorization.
ECML PKDD 2016.



Factorization Models

Figure: Image taken from blog2.sigopt.com

1 SVD: Sum of parts of different signs. Optimal with ‘classical’
product.

2 NMF: Sum of non-negative parts. Interpretable factors ‘parts
of a whole’.

3 Max-times: Maximum of non-negative parts. Interpretable
factors ‘winner takes all’

4 Mixed Tropical-Linear Model: Some entries determined by
NMF some entries determined by Max-times.



The Mixed Tropical-Linear Model

Given an input matrix A ∈ Rn×m
+ , we seek factor matrices

B ∈ Rn×k
+ and C ∈ Rk×m

+ and parameters α ∈ Rn×m, such that

Aij ≈ αij(B � C ) + (1− αij)(BC )ij .

αij ≈ 1 ⇔ Aij determined by tropical product

αij ≈ 0 ⇔ Aij determined by linear product

We enforce
αij = σ(θi + φj),

where θ ∈ Rn and φ ∈ Rm are vectors to be determined and σ is
the logistic sigmoid

σ(x) =
1

1 + exp(−x)
.



The Mixed Tropical-Linear Model

For B ∈ Rn×k
+ , C ∈ Rk×m

+ , θ ∈ Rn and φ ∈ Rm define the mixed
tropical-linear product

(B �θ,φ C )ij = αij(B � C ) + (1− αij)(BC )ij ,

where αij = σ(θi + φj).

Mixed Tropical-Linear Low-Rank Approximation

Given an input matrix A ∈ Rn×m
+ and an integer k > 0, find

B ∈ Rn×k
+ , C ∈ Rk×m

+ , θ ∈ Rn and φ ∈ Rm such that

‖A− B �θ,φ C‖F

is minimized.



Our Algorithm



Examples

Table: Reconstruction error for real-world datasets.

Climate NPAS Face 4NEWS HPI
k = 10 10 40 20 15

Latitude 0.023 0.207 0.157 0.536 0.016
SVD 0.025 0.209 0.140 0.533 0.015
NMF 0.080 0.223 0.302 0.541 0.124
Cancer 0.066 0.237 0.205 0.554 0.026



Examples



Conclusion

’Classical’ low-rank approximate factorizations used
throughout applied maths.

Tropical low-rank approximate factorizations including
min-plus and max-times provide a completely different model
but with analogous algebraic structure.

We introduced a novel model that interpolates between
NNMF and max-times.

Able to outperform SVD on some real life data sets. What is
the structure being detected?

S. Karaev, J. Hook and P. Miettinen.
Latitude: A Model for Mixed Linear-Tropical Matrix
Factorization.
SIAM International Conference on Data Mining 2018.


