

A Model For Mixed Linear-Tropical Matrix Factorization

James Hook, Sanjar Karaev, Pauli Miettinen

University of Birmingham: 18th June 2018

Low-Rank Approximate Factorization

Given a matrix $A \in \mathbb{R}^{n \times m}$, an approximate factorization of rank k is a pair $B \in \mathbb{R}^{n \times k}$ and $C \in \mathbb{R}^{k \times m}$, such that

$$A \approx BC.$$

Such approximate factorizations are used throughout applied mathematics in...

- Compression
- Visualization/interpretation
- Matrix completion/prediction

Huge number of variations

- Constraints on factor matrices e.g. orthogonal, triangular, non-negative...
- Measure of closeness e.g. Frobenius norm, KL divergence...
- What about the matrix-matrix product itself?

Tropical Semirings

Tropical algebra concerns any semiring whose ‘addition’ operation is max or min.

E.g. the min-plus semiring $\mathbb{R}_{\min+} = [\mathbb{R} \cup \{\infty\}, \oplus, \otimes]$, where

$$a \oplus b = \min\{a, b\}, \quad a \otimes b = a + b, \quad \forall a, b \in \mathbb{R}_{\min+}.$$

Min-plus matrix multiplication is defined in analogy to the classical case. For $A \in \mathbb{R}_{\min+}^{n \times m}$ and $B \in \mathbb{R}_{\min+}^{m \times d}$ we have $A \otimes B \in \mathbb{R}_{\min+}^{n \times d}$, with

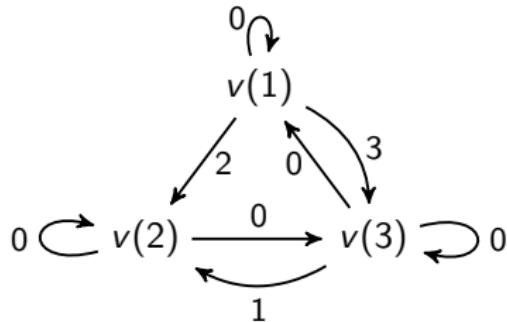
$$(A \otimes B)_{ij} = \bigoplus_{k=1}^m a_{ik} \otimes b_{kj} = \min_{k=1}^m (a_{ik} + b_{kj}).$$

For example

$$\begin{bmatrix} 0 & 2 & 3 \\ \infty & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 2 & 3 \\ \infty & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Paths through graphs viewpoint

$$\begin{bmatrix} 0 & 2 & 3 \\ \infty & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 2 & 3 \\ \infty & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$



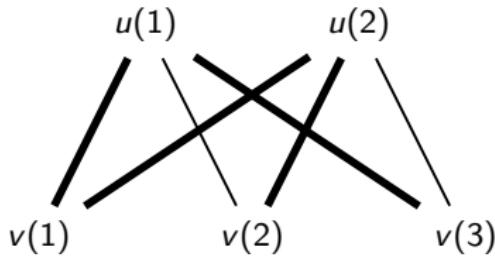
- For $A \in \mathbb{R}_{\min+}^{n \times n}$, precedence graph $\Gamma(A)$.

Proposition

$(A^{\otimes \ell})_{ij} = \text{the weight of the minimally weighted path of length } \ell, \text{ through } \Gamma(A), \text{ from } v(i) \text{ to } v(j).$

Paths through graphs viewpoint

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ \cdot & 0 & 1 \\ \cdot & \cdot & 0 \end{bmatrix}$$



- For $A \in \mathbb{R}_{\min+}^{n \times d}$, precedence bipartite graph $\mathcal{B}(A)$.

Proposition

$(A \otimes A^T)_{ij} = \text{the weight of the minimally weighted path (of length 2) through } \mathcal{B}(A) \text{ from } v(i) \text{ to } v(j).$

Min-Plus Low-Rank Matrix Approximation

Min-plus low-rank matrix approximation

For $M \in \mathbb{R}_{\min+}^{n \times m}$ and $0 < k \leq \min\{n, m\}$, we seek

$$\min_{A \in \mathbb{R}_{\min+}^{n \times k}, B \in \mathbb{R}_{\min+}^{k \times m}} \|M - A \otimes B\|_F^2.$$

Network interpretation

Given a network with shortest path distances M build a new network with k 'transport hub' vertices whose shortest path distances approximate M .

Geometrical interpretation

Given m points $\mathbf{m}_1, \dots, \mathbf{m}_m \in \mathbb{R}_{\max}^n$ find a k -dimensional min-plus linear space C to minimize

$$\sum_{i=1}^m \text{dist}(\mathbf{m}_i - C)^2.$$

Min-Plus Low-Rank Matrix Approximation

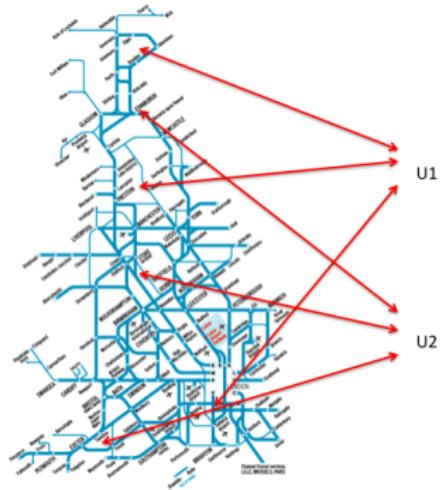


Figure: Original image taken from Network Rail

J. Hook.

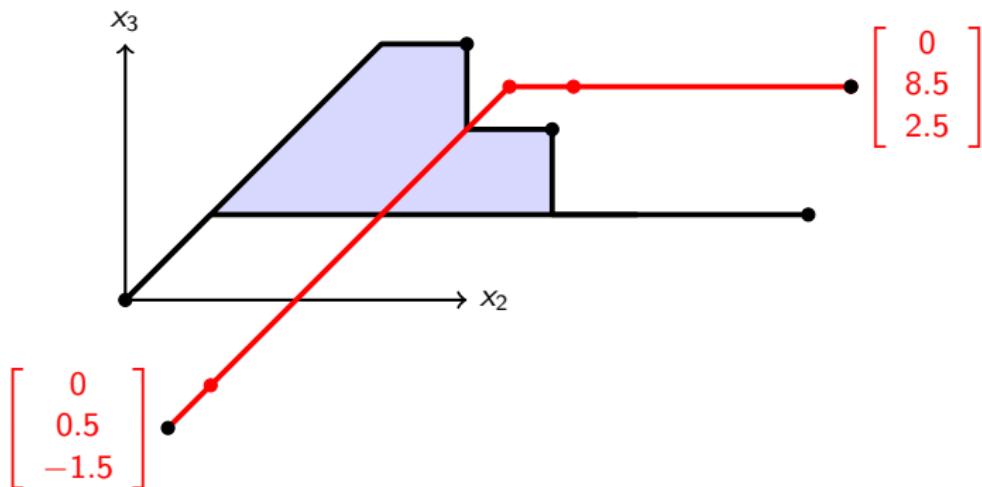
Min-plus algebraic low rank matrix approximation: a new method for revealing structure in networks.
arXiv:1708.06552.

J. Hook.

Linear regression over the max-plus semiring: algorithms and applications.
arXiv:1712.03499.

Column space geometry viewpoint

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & 5 & 8 \\ 0 & 3 & 2 & 1 \end{bmatrix} \approx \begin{bmatrix} 0 & 0 \\ 0.5 & 8.5 \\ -1.5 & 2.5 \end{bmatrix} \otimes \begin{bmatrix} 0.5 & 4 & 4.5 & \infty \\ 0 & 0 & -0.25 & -0.67 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & -0.25 & -0.67 \\ 1 & 4.5 & 5 & 7.83 \\ -1 & 2.5 & 2.25 & 1.83 \end{bmatrix}$$



Max-Times Semiring

The max-times semiring $\mathbb{R}_{\max \times} = [\mathbb{R}_+, \boxplus, \boxtimes]$, where

$$a \boxplus b = \max\{a, b\}, \quad a \boxtimes b = a \times b, \quad \forall a, b \in \mathbb{R}_{\max \times}.$$

Max-times matrix multiplication is defined in analogy to the classical case. For $A \in \mathbb{R}_{\max \times}^{n \times m}$ and $B \in \mathbb{R}_{\max \times}^{m \times d}$ we have $A \boxtimes B \in \mathbb{R}_{\max \times}^{n \times d}$, with

$$(A \boxtimes B)_{ij} = \bigoplus_{k=1}^m a_{ik} \boxtimes b_{kj} = \max_{k=1}^m (a_{ik} b_{kj}).$$

For example

$$\begin{bmatrix} 0 & 100 & 100 \\ 0 & 1 & 1 \\ 1 & 10 & 1 \end{bmatrix} \boxtimes \begin{bmatrix} 0 & 100 & 100 \\ 0 & 1 & 1 \\ 1 & 10 & 1 \end{bmatrix} = \begin{bmatrix} 100 & 1000 & 100 \\ 1 & 10 & 1 \\ 1 & 100 & 100 \end{bmatrix}.$$

Max-Times Low-Rank Approximation

Max-Times Low-Rank Approximation

Given an input matrix $A \in \mathbb{R}_{\max}^{n \times m}$ and an integer $k > 0$, find $B \in \mathbb{R}_{\max}^{n \times k}$, $C \in \mathbb{R}_{\max}^{k \times m}$, such that

$$\|A - B \boxtimes C\|_F$$

is minimized.

S. Karaev and P. Miettinen.

Capricorn: An Algorithm for Subtropical Matrix Factorization.

SIAM International Conference on Data Mining 2016.

S. Karaev and P. Miettinen.

Cancer: Another Algorithm for Subtropical Matrix Factorization.

ECML PKDD 2016.

Factorization Models

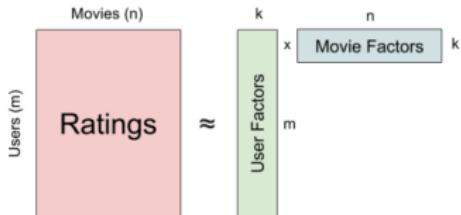


Figure: Image taken from blog2.sigopt.com

- ① **SVD:** Sum of parts of different signs. [Optimal with 'classical' product.](#)
- ② **NMF:** Sum of non-negative parts. [Interpretable factors 'parts of a whole'.](#)
- ③ **Max-times:** Maximum of non-negative parts. [Interpretable factors 'winner takes all'](#)
- ④ **Mixed Tropical-Linear Model:** Some entries determined by NMF some entries determined by Max-times.

The Mixed Tropical-Linear Model

Given an input matrix $A \in \mathbb{R}_+^{n \times m}$, we seek factor matrices $B \in \mathbb{R}_+^{n \times k}$ and $C \in \mathbb{R}_+^{k \times m}$ and parameters $\alpha \in \mathbb{R}^{n \times m}$, such that

$$A_{ij} \approx \alpha_{ij}(B \boxtimes C) + (1 - \alpha_{ij})(BC)_{ij}.$$

- $\alpha_{ij} \approx 1 \Leftrightarrow A_{ij}$ determined by tropical product
- $\alpha_{ij} \approx 0 \Leftrightarrow A_{ij}$ determined by linear product

We enforce

$$\alpha_{ij} = \sigma(\theta_i + \phi_j),$$

where $\theta \in \mathbb{R}^n$ and $\phi \in \mathbb{R}^m$ are vectors to be determined and σ is the logistic sigmoid

$$\sigma(x) = \frac{1}{1 + \exp(-x)}.$$

The Mixed Tropical-Linear Model

For $B \in \mathbb{R}_+^{n \times k}$, $C \in \mathbb{R}_+^{k \times m}$, $\theta \in \mathbb{R}^n$ and $\phi \in \mathbb{R}^m$ define the mixed tropical-linear product

$$(B \boxtimes_{\theta, \phi} C)_{ij} = \alpha_{ij}(B \boxtimes C) + (1 - \alpha_{ij})(BC)_{ij},$$

where $\alpha_{ij} = \sigma(\theta_i + \phi_j)$.

Mixed Tropical-Linear Low-Rank Approximation

Given an input matrix $A \in \mathbb{R}_+^{n \times m}$ and an integer $k > 0$, find $B \in \mathbb{R}_+^{n \times k}$, $C \in \mathbb{R}_+^{k \times m}$, $\theta \in \mathbb{R}^n$ and $\phi \in \mathbb{R}^m$ such that

$$\|A - B \boxtimes_{\theta, \phi} C\|_F$$

is minimized.

Our Algorithm

Algorithm 1 Latitude

Input: $A \in \mathbb{R}_+^{n \times m}$, $k \in \mathbb{N}$, $N \in \mathbb{N}$
Output: $B^* \in \mathbb{R}_+^{n \times k}$, $C^* \in \mathbb{R}_+^{k \times m}$, $\theta^* \in \mathbb{R}^{n \times 1}$, $\phi^* \in \mathbb{R}^{1 \times m}$
Parameters: M \triangleright The maximum possible value of parameter vectors. In practice 5 is a good choice

- 1: **function** LATITUDE(A, k, N)
- 2: initialize B and C
- 3: $D \leftarrow BC - A$
- 4: $f_i \leftarrow \sum_{j=1}^m D_{ij}$, $g_j \leftarrow \sum_{i=1}^n D_{ij}$
- 5: $s_i \leftarrow$ index of the i -th smallest element of f
- 6: $t_j \leftarrow$ index of the j -th smallest element of g
- 7: $\theta_i \leftarrow \frac{i-n}{n-1}M$
- 8: $\phi_j \leftarrow \frac{j-m}{m-1}M$
- 9: $B^* \leftarrow B, C^* \leftarrow C$ \triangleright Initialize best factors.
- 10: $\theta^* \leftarrow \theta, \phi^* \leftarrow \phi$ \triangleright Initialize best parameters.
- 11: $bestError \leftarrow \|A - B \boxtimes_{\theta, \phi} C\|_F$
- 12: **for** $iter \leftarrow 1$ **to** N **do**
- 13: **for** $j \leftarrow 1$ **to** m **do**
- 14: $[C^j, \phi_j] \leftarrow \text{MixReg}(A^j, B, C^j, \theta, \phi_j, M)$
- 15: **for** $i \leftarrow 1$ **to** n **do**
- 16: $[B_i, \theta_i] \leftarrow \text{MixReg}(A_i^T, C^T, B_i^T, \phi, \theta_i, M)$
- 17: **if** $\|A - B \boxtimes_{\theta, \phi} C\|_F < bestError$ **then**
- 18: $B^* \leftarrow B, C^* \leftarrow C$
- 19: $\theta^* \leftarrow \theta, \phi^* \leftarrow \phi$
- 20: $bestError \leftarrow \|A - B \boxtimes_{\theta, \phi} C\|_F$
- 21: **return** $B^*, C^*, \theta^*, \phi^*$

Algorithm 2 MixReg

Input: $a \in \mathbb{R}_+^{n \times 1}$, $B \in \mathbb{R}_+^{n \times k}$, $c \in \mathbb{R}_+^{k \times 1}$, $\theta \in \mathbb{R}^{n \times 1}$, $t \in \mathbb{R}$, $M > 0$
Output: $c \in \mathbb{R}^{k \times 1}$, $t \in \mathbb{R}$

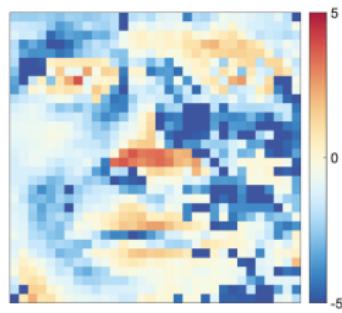
- 1: **function** MixReg(a, B, c, θ, t, M)
- 2: $X_i \leftarrow B_i \square c^T$
- 3: $\alpha \leftarrow \sigma(\theta + t)$
- 4: $T_{ij} \leftarrow \begin{cases} 1 & j = \arg \max_{1 \leq s \leq k} X_{is} \\ 1 - \alpha_i & \text{otherwise} \end{cases}$
- 5: $Y \leftarrow B \square T$
- 6: $c \leftarrow \arg \min_{p \in \mathbb{R}_+^{k \times 1}} \|a - Bp\|_F$
- 7: $t \leftarrow \arg \min_{s \in [-M, M]} \|a - B \boxtimes_{\theta, s} c\|_F$
- 8: **return** c, t

Examples

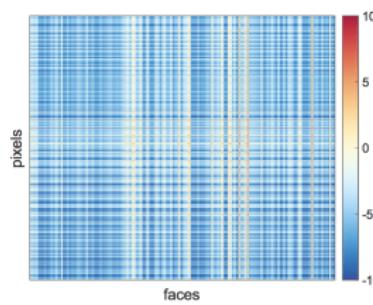
Table: Reconstruction error for real-world datasets.

$k =$	Climate	NPAS	Face	4NEWS	HPI
Latitude	0.023	0.207	0.157	0.536	0.016
SVD	0.025	0.209	0.140	0.533	0.015
NMF	0.080	0.223	0.302	0.541	0.124
Cancer	0.066	0.237	0.205	0.554	0.026

Examples



(a) Vector θ



(b) Matrix α



(c) Columns of B

Figure 3: (a) Vector θ for the Face data as an image. (b) Matrix α for the Face data. (c) Four columns of B for the Face data.

Conclusion

- 'Classical' low-rank approximate factorizations used throughout applied maths.
- Tropical low-rank approximate factorizations including min-plus and max-times provide a completely different model but with analogous algebraic structure.
- We introduced a novel model that interpolates between NNMF and max-times.
- Able to outperform SVD on some real life data sets. What is the structure being detected?

S. Karaev, J. Hook and P. Miettinen.

Latitude: A Model for Mixed Linear-Tropical Matrix Factorization.

SIAM International Conference on Data Mining 2018.