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Low-Rank Approximate Factorization

Given a matrix A € R™™ an approximate factorization of rank k
is a pair B € R™k and C € R**™ such that

A~ BC.

Such approximate factorizations are used throughout applied
mathematics in...

@ Compression

@ Visualization/interpretation

e Matrix completion/prediction
Huge number of variations

@ Constrains on factor matrices e.g. orthogonal, triangular,
non-negative...

@ Measure of closeness e.g. Frobenius norm, KL divergence...

@ What about the matrix-matrix product itself?



Tropical Semirings

Tropical algebra concerns any semiring whose ‘addition’ operation
is max or min.
E.g. the min-plus semiring Rpin+ = [R U {oc}, @, ®], where

adb=min{a,b}, a®b=a+b, VabecRnypnst.

Min-plus matrix multiplication is defined in analogy to the classical

case. For A€ RIZ™ andBERﬂiﬁ‘i we haveA®B€Rg§nd+,
with
m m

(A ® B),'J' = ke_? ajk ® bkj = I;’I:irf(a,'k + bkj).
For example
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Paths through graphs viewpoint
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@ For A€ RX" | precedence graph [(A).

min +’

(AW)U = the weight of the minimally weighted path of length ¢, through T (A),
from v(i) to v(j).



Paths through graphs viewpoint
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e For A e R™9  precedence bipartite graph B(A).

min +'

(A® AT)U = the weight of the minimally weighted path (of length
2) through B(A) from v(i) to v(j).




Min-Plus Low-Rank Matrix Approximation

Min-plus low-rank matrix approximation

For M € RI*™ and 0 < k < min{n, m}, we seek

min +

min IM—A® B|z.
ACRMXK - BeRKXm

min +? min +

Network interpretation

Given a network with shortest path distances M build a new
network with k ‘transport hub' vertices whose shortest path
distances approximate M.

Geometrical interpretation

Given m points my,...,my, € R} find a k-dimensional min-plus
linear space C to minimize

Z dist(m; — C)2.
i=1



Min-Plus Low-Rank Matrix Approximation
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max-plus semiring:
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Column space geometry viewpoint
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Max-Times Semiring

The max-times semiring Rpax x = [R4, B, K], where
alBb=max{a, b}, alb=axb, VabecRnxx-

Max-times matrix multiplication is defined in analogy to the
classical case. For A€ R?7X™ and B € RTX, we have

max X
AX B c R™9  with

max X!

(A X B);j = Bﬂ ajk X bkj = T’Ei((aikbkj).

k=1
For example
0 100 100 0 100 100 100 1000 100
0 1 1 X|10 1 1 = 1 10 1
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Max-Times Low-Rank Approximation

Max-Times Low-Rank Approximation

Given an input matrix A € Rpyaxx and an integer k > 0, find
B € Rumaxx RT*¥, C € Ripax x R¥*™, such that

|A-BRC|
is minimized.

¥ S. Karaev and P. Miettinen.
Capricorn: An Algorithm for Subtropical Matrix Factorization.
SIAM International Conference on Data Mining 2016.

[3 S. Karaev and P. Miettinen.
Cancer: Another Algorithm for Subtropical Matrix
Factorization.
ECML PKDD 2016.



Factorization Models
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Figure: Image taken from blog2.sigopt.com

SVD: Sum of parts of different signs. Optimal with ‘classical’
product.

NMF: Sum of non-negative parts. Interpretable factors ‘parts
of a whole'.

Max-times: Maximum of non-negative parts. Interpretable
factors ‘winner takes all’

Mixed Tropical-Linear Model: Some entries determined by
NMF some entries determined by Max-times.
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The Mixed Tropical-Linear Model

Given an input matrix A € R7*™, we seek factor matrices
B e ]RiXk and C € Rixm and parameters o« € R"*™ such that

Aj =~ ajj(BXR C) + (1 — ajj)(BC)j;.

@ ajj ~ 1<« Aj determined by tropical product
@ ajj ~ 0 < Aj determined by linear product
We enforce
ajj = o(0; + &),

where # € R™ and ¢ € R™ are vectors to be determined and o is
the logistic sigmoid



The Mixed Tropical-Linear Model

For B € R7**, C € RX*™ 0 € R” and ¢ € R™ define the mixed
tropical-linear product

(B C)jj = a;j(BR C) + (1 — ) (BC)j,

where Qjj = 0'(9,' + ¢J)

Mixed Tropical-Linear Low-Rank Approximation

Given an input matrix A € R7*™ and an integer k > 0, find
B e R7*¥, C e R¥*™ 9 € R" and ¢ € R™ such that

|IA— BNy CllF

is minimized.



Our Algorithm

Algorithm 1 Latitude

R AEBELY

Input: A e RT"™ ke M,Ne N
Output: B* € R, C* e RA™™, 6* e R, ¢* e V™
Parameters: M & The maximum possible value of
parameter vectors. In practice 5 is a good choice
function LatiTupE(A, kK, N)

initialize B and C

D+ BC-A

fie= BT Dijrgy e Ly Dy

5; +— index of the i-th smallest element of f

1 +— index of the j-th smallest element of g

0; « =AM

0; ¢ LM
B« BC' +C t= Initialize best factors.
0% — 8,9 — ¢ © Initialize best parameters.

bestError + ||A —BBg 4 C|| -
for iter «+ 1 to N do
for j = 1 to mdo . .
[C7,¢;] < MixReg(A/,B,C7,0,¢;,M)
for i+ 1tondo
[B;, 8] + MixReg(A] ,CT BT 6,0,,M)
if ||.a1. B, ,C||F < bestError then
*+~B,C*
9' = 0,0
bestError + IlA—BEp_,C”F
return B*, C*, 8°, ¢*

Algorithm 2 MixReg

#

Input: a € B!, Be R™¥, ceRY!, 6 e R™), 1 R,
M=>0
Output: ce R¥* 1 e R

: function M1xRec(a, B, ¢, 8, 1, M)

X+ B0

a+—o(0+1)

Tij+ ! J = argmax; <;gp Xis
1—a; otherwise

Y + BOT

céargmin, oo |la—Bp|lp
1 argminge_pgp) la—BBgcllF
return ¢, 1




Table: Reconstruction error for real-world datasets.

Climate NPAS Face 4NEWS HPI
k= 10 10 40 20 15
Latitude 0.023 0.207 0.157 0.536  0.016
SvD 0.025 0.209 0.140 0.533 0.015
NMF 0.080 0.223 0.302 0.541 0.124
Cancer 0.066 0.237 0.205 0.554  0.026




Examples
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Figure 3: (a) Vector O for the Face data as an image. (b) Matrix & for the Face data. (c) Four columns of B for the Face
data.




Conclusion

@ 'Classical’ low-rank approximate factorizations used
throughout applied maths.

@ Tropical low-rank approximate factorizations including
min-plus and max-times provide a completely different model
but with analogous algebraic structure.

@ We introduced a novel model that interpolates between
NNMF and max-times.

@ Able to outperform SVD on some real life data sets. What is
the structure being detected?

¥ S. Karaev, J. Hook and P. Miettinen.
Latitude: A Model for Mixed Linear-Tropical Matrix

Factorization.
SIAM International Conference on Data Mining 2018.



