Topology and Material Optimization via Mathematical Programming

Michal Kočvara School of Mathematics, University of Birmingham

June 2018

(ロ) (同) (三) (三) (三) (○) (○)

Structural optimization

The goal is to improve behavior of a mechanical structure while keeping its structural properties.

(日) (日) (日) (日) (日) (日) (日)

Objectives/constraints: weight, stiffness, stress, vibration modes, stability

Control variables: shape \rightarrow shape optimization material properties \rightarrow topology/material optimization

Topology optimization

The goal is to improve behavior of a mechanical structure while keeping its structural properties.

(日) (日) (日) (日) (日) (日) (日)

Objectives/constraints: weight, stiffness, vibration modes, stability, stress

Control variables:

thickness/density (topology optimization, TO) material properties (FMO)

Topology optimization

Images courtesy of FE-Design and BMW Motoren GmbH

FMO

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

FMO

Weak formulation: Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} e(u)(x)^{\top} \cdot \mathbf{E} \cdot e(v)(x) dx}_{\mathbf{a}_{E}(u, v)} = \underbrace{\int_{\Gamma} f(x)^{\top} v(x) dx}_{l(v)} \quad \forall v \in U.$$
strain energy work

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Weak formulation: Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} \boldsymbol{e}(\boldsymbol{u})(\boldsymbol{x})^{\top} \cdot \boldsymbol{E} \cdot \boldsymbol{e}(\boldsymbol{v})(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{a}_{\boldsymbol{E}}(\boldsymbol{u}, \boldsymbol{v})} = \underbrace{\int_{\Gamma} \boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{v}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{l}(\boldsymbol{v})} \quad \forall \boldsymbol{v} \in \boldsymbol{U}.$$

$$E = \begin{pmatrix} E_{1111} & E_{1122} & \sqrt{2}E_{1112} \\ & E_{2222} & \sqrt{2}E_{2212} \\ sym. & 2E_{1212} \end{pmatrix}$$

 $E \in \mathbb{S}^6$ in 3D case

・ロト・(四ト・(日下・(日下・))への)

Weak formulation: Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} \boldsymbol{e}(\boldsymbol{u})(\boldsymbol{x})^{\top} \cdot \boldsymbol{E} \cdot \boldsymbol{e}(\boldsymbol{v})(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{a}_{\boldsymbol{E}}(\boldsymbol{u}, \boldsymbol{v})} = \underbrace{\int_{\Gamma} \boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{v}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{l}(\boldsymbol{v})} \quad \forall \boldsymbol{v} \in \boldsymbol{U}.$$

 $E(x) = \rho(x)E_0$ with $0 \le \rho(x) \le 1$... topology optimization $E(x) = \rho(x)^p E_0$ with $0 \le \rho(x) \le 1$ $(p = 3) \dots$ SIMP E_0 a given (homogeneous, isotropic) material

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Weak formulation: Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} \boldsymbol{e}(\boldsymbol{u})(\boldsymbol{x})^{\top} \cdot \boldsymbol{E} \cdot \boldsymbol{e}(\boldsymbol{v})(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{a}_{\boldsymbol{E}}(\boldsymbol{u},\boldsymbol{v})} = \underbrace{\int_{\Gamma} \boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{v}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{l}(\boldsymbol{v})} \quad \forall \boldsymbol{v} \in \boldsymbol{U}.$$

 $E(x) \in (L^{\infty})^{6 \times 6} \dots$ free material optimization

Aim:

Given an amount of material, boundary conditions and external load f, find the material (distribution) so that the body is as stiff as possible under f.

Equilibrium

Weak formulation: Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} \boldsymbol{e}(\boldsymbol{u})(\boldsymbol{x})^{\top} \cdot \boldsymbol{E} \cdot \boldsymbol{e}(\boldsymbol{v})(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{a}_{\boldsymbol{E}}(\boldsymbol{u}, \boldsymbol{v})} = \underbrace{\int_{\Gamma} \boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{v}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}}_{\boldsymbol{l}(\boldsymbol{v})} \quad \forall \boldsymbol{v} \in \boldsymbol{U}.$$
strain energy work

Discretization:

$$K(\boldsymbol{E})u = f, \qquad K(\boldsymbol{E}) = \sum_{i=1}^{m} \sum_{j=1}^{G} B_{i,j} \boldsymbol{E}_i \boldsymbol{B}_{i,j}^{\top}$$

 $E = \rho E_0$ (VTS), $E = \rho^{\rho} E_0$ (SIMP), $E \in (L^{\infty})^{6 \times 6}$ (FMO)

・ロト・西ト・ヨト・ヨト・日・ つへぐ

TO primal problem

$$\begin{split} \min_{\substack{u,...,u^L,\,\rho}} \sum_{i=1}^m \rho_i \\ \text{subject to} \\ \frac{\rho \leq \rho_i \leq \overline{\rho} \quad i=1,\ldots,m}{(f^\ell)^T u^\ell \leq \gamma, \quad \ell=1,\ldots,L} \\ \mathcal{K}(\rho) u^\ell = f^\ell, \quad \ell=1,\ldots,L \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• nonconvex nonlinear programming problem.

TO, reduced primal problem

$$\begin{split} \min_{\rho} \sum_{i=1}^{m} \rho_i \\ \text{subject to} \\ \frac{\rho}{f^{\ell}} &\leq \overline{\rho}, \quad i = 1, \dots, m \\ (f^{\ell})^T \mathcal{K}(\rho)^{-1} f^{\ell} \leq \gamma, \quad \ell = 1, \dots, L \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- convex nonlinear programming problem
- complexity grows linearly with L

TO, linear SDP primal problem

(日) (日) (日) (日) (日) (日) (日)

- linear semidefinite programming problem
- L (very) large and sparse SDP constraints

FMO primal problem

$$\begin{split} \min_{u,...,u^{L}, E} \sum_{i=1}^{m} \operatorname{Tr}(E_{i}) \\ \text{subject to} \\ E_{i} \succeq 0, \quad i = 1, \dots, m \\ \underline{\rho} \leq \operatorname{Tr}(E_{i}) \leq \overline{\rho} \quad i = 1, \dots, m \\ (f^{\ell})^{T} u^{\ell} \leq \gamma, \quad \ell = 1, \dots, L \\ K(E) u^{\ell} = f^{\ell}, \quad \ell = 1, \dots, L \end{split}$$

• nonlinear nonconvex semidefinite programming problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FMO, reduced primal problem

$$\begin{split} \min_{E} \sum_{i=1}^{m} \operatorname{Tr}(E_{i}) \\ \text{subject to} \\ E_{i} \succeq 0, \quad i = 1, \dots, m \\ \underline{\rho} \leq \operatorname{Tr}(E_{i}) \leq \overline{\rho}, \quad i = 1, \dots, m \\ (f^{\ell})^{T} \mathcal{K}(E)^{-1} f^{\ell} \leq \gamma, \quad \ell = 1, \dots, L \end{split}$$

- nonlinear convex semidefinite programming problem
- complexity grows linearly with L.

FMO, linear SDP primal problem

$$\begin{split} \min_{\mathcal{E}} \sum_{i=1}^{m} \operatorname{Tr}(\mathcal{E}_{i}) \\ \text{subject to} \\ E_{i} \succeq 0, \quad i = 1, \dots, m \\ \underline{\rho} \leq \operatorname{Tr}(\mathcal{E}_{i}) \leq \overline{\rho}, \quad i = 1, \dots, m \\ \begin{pmatrix} \gamma & (f^{\ell})^{T} \\ f^{\ell} & \mathcal{K}(\mathcal{E}) \end{pmatrix} \succeq 0, \quad \ell = 1, \dots, L \end{split}$$

- linear semidefinite programming problem
- L very large and sparse SDP constraints

Summary—TO/FMO primal models

There are two classes of models, one based on the primal and one on the dual formulation of the problem.

Primal formulations

- difficult optimisation problems:
 - nonconvex semidefinite programming (SDP) problem

(日) (日) (日) (日) (日) (日) (日)

- convex nonlinear SDP problem
- large scale linear SDP problem
- N-SDP does not satisfy the Mangasarian-Fromowitz constraint qualification.

FMO models: additional constraints

So far we considered the "basic" topology optimization problem.

Optimal topology/material can change significantly when we add some important¹ constraints.

- Vibration (self-vibration modes)
- Stability w.r.t. buckling
- Displacement constraints
- Stress constraints

The resulting optimization problem can become much more complicated.

¹Importance depends on the application!

Vibration constraints

The fundamental frequency of the optimal structure is bigger than or equal to a given frequency.

Self-vibrations of the (discretized) structure-eigenvalues of

 $K(E)w = \lambda M(E)w$

where the mass matrix M(E) has the same sparsity as K(E).

Low vibrations dangerous \rightarrow constraint $\lambda_{\min} \geq \hat{\lambda}$

Equivalently: $K(E) - \hat{\lambda}M(E) \succeq 0$

Large-scale SDP constraints \rightarrow use SDP formulation of TO/FMO

Example—vibration constraint

Example—vibration constraint

TO without and with vibration constraint

< ∃→

ъ

Global stability (buckling) constraints

The GEVP

 $K(E)w = \lambda G(E, u)w,$

where G(E, u) is the geometry stiffness matrix of the structure (depending nonlinearly on *E* and displacement *u*).

Buckling constraint:

 $\lambda(E,u)\not\in(0,1)$

Buckling constraints in primal FMO

 $K(E) + G(E, u) \succeq 0$.

Buckling constraints in reduced primal FMO

$$K(E)+G(E,K^{-1}(E)f)\succeq 0.$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Case studies: Tc12

50.000 design variables (sizing), 4 LC + global stability constraints

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

人口 医水黄 医水黄 医水黄 化口

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへぐ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Stress constraints

Continuous formulation:

restrict norm $\|\sigma(x)\|_{vM}$ for all $x \in \Omega$, $\sigma(x) = Ee(u(x))$

Finite element approximation: we use integral form of stress constraints

$$\int_{\Omega_i} \|\sigma\|_{\mathcal{V}M}^2 \leq s_\sigma |\Omega_i|;$$

The von Mises (semi)norm $\|\cdot\|_{vM}$ defined as

$$\|\sigma\|_{VM}^{2} := \sigma^{\top} M \sigma, \text{ with } M = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

Example: L-shape domain

イロト 不得 トイヨト イヨト 二日

Example: L-shape domain, TO

For the TO problem, the only way to remove the stress singularity is to change the geometry of the domain, to replace the sharp corner by a smooth arc.

(ロ) (同) (三) (三) (三) (○) (○)

Example: L-shape domain, TO

Figure: Problem TC04-s4, TO, without and with stress constraints.