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Structural optimization

The goal is to improve behavior of a mechanical structure while
keeping its structural properties.

Objectives/constraints:
weight, stiffness, stress, vibration modes, stability

Control variables:
shape→ shape optimization
material properties→ topology/material optimization



Topology optimization

The goal is to improve behavior of a mechanical structure while
keeping its structural properties.

Objectives/constraints:
weight, stiffness, vibration modes, stability, stress

Control variables:
thickness/density (topology optimization, TO)
material properties (FMO)



Topology optimization
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Static equilibrium

Weak formulation:
Find u ∈ U := {u ∈ H|uΓ0 = 0} such that∫

Ω
e(u)(x)> · E · e(v)(x)dx︸ ︷︷ ︸

aE (u, v)

=

∫
Γ

f (x)>v(x)dx︸ ︷︷ ︸
l(v)

∀v ∈ U.

strain energy work



Static equilibrium

Weak formulation:
Find u ∈ U := {u ∈ H|uΓ0 = 0} such that∫
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E ∈ S6 in 3D case



Static equilibrium

Weak formulation:
Find u ∈ U := {u ∈ H|uΓ0 = 0} such that∫

Ω
e(u)(x)> · E · e(v)(x)dx︸ ︷︷ ︸

aE (u, v)

=

∫
Γ

f (x)>v(x)dx︸ ︷︷ ︸
l(v)

∀v ∈ U.

E(x) = ρ(x)E0 with 0 ≤ ρ(x) ≤ 1 . . . topology optimization

E(x) = ρ(x)pE0 with 0 ≤ ρ(x) ≤ 1 (p = 3) . . . SIMP

E0 a given (homogeneous, isotropic) material



Static equilibrium

Weak formulation:
Find u ∈ U := {u ∈ H|uΓ0 = 0} such that∫

Ω
e(u)(x)> · E · e(v)(x)dx︸ ︷︷ ︸

aE (u, v)

=

∫
Γ

f (x)>v(x)dx︸ ︷︷ ︸
l(v)

∀v ∈ U.

E(x) ∈ (L∞)6×6 . . . free material optimization

Aim:

Given an amount of material, boundary conditions and external
load f , find the material (distribution) so that the body is as stiff
as possible under f .



Equilibrium

Weak formulation:
Find u ∈ U := {u ∈ H|uΓ0 = 0} such that∫

Ω
e(u)(x)> · E · e(v)(x)dx︸ ︷︷ ︸

aE (u, v)

=

∫
Γ

f (x)>v(x)dx︸ ︷︷ ︸
l(v)

∀v ∈ U.

strain energy work

Discretization:

K (E)u = f , K (E) =
m∑

i=1

G∑
j=1

Bi,jEiB>i,j

E = ρE0 (VTS), E = ρpE0 (SIMP), E ∈ (L∞)6×6 (FMO)



TO primal problem

min
u,...,uL, ρ

m∑
i=1

ρi

subject to
ρ ≤ ρi ≤ ρ i = 1, . . . ,m

(f `)T u` ≤ γ, ` = 1, . . . ,L

K (ρ)u` = f `, ` = 1, . . . ,L

• nonconvex nonlinear programming problem.



TO, reduced primal problem

min
ρ

m∑
i=1

ρi

subject to
ρ ≤ ρi ≤ ρ, i = 1, . . . ,m

(f `)T K (ρ)−1f ` ≤ γ, ` = 1, . . . ,L

• convex nonlinear programming problem
• complexity grows linearly with L



TO, linear SDP primal problem

min
ρ

m∑
i=1

ρi

subject to
ρ ≤ ρi ≤ ρ, i = 1, . . . ,m(
γ (f `)T

f ` K (ρ)

)
� 0, ` = 1, . . . ,L

• linear semidefinite programming problem
• L (very) large and sparse SDP constraints



FMO primal problem

min
u,...,uL,E

m∑
i=1

Tr(Ei)

subject to
Ei � 0, i = 1, . . . ,m
ρ ≤ Tr(Ei) ≤ ρ i = 1, . . . ,m

(f `)T u` ≤ γ, ` = 1, . . . ,L

K (E)u` = f `, ` = 1, . . . ,L

• nonlinear nonconvex semidefinite programming problem.



FMO, reduced primal problem

min
E

m∑
i=1

Tr(Ei)

subject to
Ei � 0, i = 1, . . . ,m
ρ ≤ Tr(Ei) ≤ ρ, i = 1, . . . ,m

(f `)T K (E)−1f ` ≤ γ, ` = 1, . . . ,L

• nonlinear convex semidefinite programming problem
• complexity grows linearly with L.



FMO, linear SDP primal problem

min
E

m∑
i=1

Tr(Ei)

subject to
Ei � 0, i = 1, . . . ,m
ρ ≤ Tr(Ei) ≤ ρ, i = 1, . . . ,m(
γ (f `)T

f ` K (E)

)
� 0, ` = 1, . . . ,L

• linear semidefinite programming problem
• L very large and sparse SDP constraints



Summary—TO/FMO primal models

There are two classes of models, one based on the primal and
one on the dual formulation of the problem.

Primal formulations
• difficult optimisation problems:

• nonconvex semidefinite programming (SDP) problem
• convex nonlinear SDP problem
• large scale linear SDP problem

• N-SDP does not satisfy the Mangasarian-Fromowitz
constraint qualification.



FMO models: additional constraints

So far we considered the “basic” topology optimization problem.

Optimal topology/material can change significantly when we
add some important1 constraints.

• Vibration (self-vibration modes)
• Stability w.r.t. buckling
• Displacement constraints
• Stress constraints

The resulting optimization problem can become much more
complicated.

1Importance depends on the application!



Vibration constraints

The fundamental frequency of the optimal structure is bigger
than or equal to a given frequency.

Self-vibrations of the (discretized) structure—eigenvalues of

K (E)w = λM(E)w

where the mass matrix M(E) has the same sparsity as K (E).

Low vibrations dangerous→ constraint λmin ≥ λ̂

Equivalently: K (E)− λ̂M(E) � 0

Large-scale SDP constraints→ use SDP formulation of
TO/FMO



Example—vibration constraint
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Example—vibration constraint
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Global stability (buckling) constraints

The GEVP
K (E)w = λG(E ,u)w ,

where G(E ,u) is the geometry stiffness matrix of the structure
(depending nonlinearly on E and displacement u).

Buckling constraint:
λ(E ,u) 6∈ (0,1)

Buckling constraints in primal FMO

K (E) + G(E ,u) � 0 .

Buckling constraints in reduced primal FMO

K (E) + G(E ,K−1(E)f ) � 0 .



Case studies: Tc12
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Displacement constraints: actuator design

u < -1x



Displacement constraints: actuator design



Displacement constraints: actuator design



Displacement constraints: actuator design



Displacement constraints: actuator design
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Stress constraints
Continuous formulation:
restrict norm ‖σ(x)‖vM for all x ∈ Ω, σ(x) = Ee(u(x))

Finite element approximation:
we use integral form of stress constraints∫

Ωi

‖σ‖2vM ≤ sσ|Ωi | ;

The von Mises (semi)norm ‖ · ‖vM defined as

‖σ‖2vM := σ>Mσ, with M =



2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6





Example: L-shape domain



Example: L-shape domain, TO

For the TO problem, the only way to remove the stress
singularity is to change the geometry of the domain, to replace
the sharp corner by a smooth arc.



Example: L-shape domain, TO
von Mises Stress

Stress:

6.3e-0066.3e-006

1.4e+0001.4e+000

Stress:
von Mises Stress

2.8e+0002.8e+000

4.3e+0004.3e+000

5.7e+0005.7e+000

Figure: Problem TC04-s4, TO, without and with stress constraints.
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