Topology and Material Optimization via Mathematical Programming

Michal Kočvara School of Mathematics, University of Birmingham

June 2018

Structural optimization

The goal is to improve behavior of a mechanical structure while keeping its structural properties.

Objectives/constraints: weight, stiffness, stress, vibration modes, stability

Control variables: shape → shape optimization material properties → topology/material optimization

Topology optimization

The goal is to improve behavior of a mechanical structure while keeping its structural properties.

Objectives/constraints:

weight, stiffness, vibration modes, stability, stress

Control variables:

thickness/density (topology optimization, TO) material properties (FMO)

Topology optimization

Images courtesy of FE-Design and BMW Motoren GmbH

FMO

FMO

FMO

Weak formulation:

Find
$$u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$$
 such that

$$\underbrace{\int_{\Omega} e(u)(x)^{\top} \cdot \mathbf{E} \cdot e(v)(x) dx}_{\mathbf{a}_{\mathbf{E}}(u, v)} = \underbrace{\int_{\Gamma} f(x)^{\top} v(x) dx}_{I(v)} \quad \forall v \in U.$$
strain energy work

Weak formulation:

Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} e(u)(x)^{\top} \cdot \boldsymbol{E} \cdot e(v)(x) \mathrm{d}x}_{\boldsymbol{a}_{\boldsymbol{E}}(u,v)} = \underbrace{\int_{\Gamma} f(x)^{\top} v(x) \mathrm{d}x}_{\boldsymbol{I}(v)} \quad \forall v \in \boldsymbol{U}.$$

$$E = \begin{pmatrix} E_{1111} & E_{1122} & \sqrt{2}E_{1112} \\ & E_{2222} & \sqrt{2}E_{2212} \\ \text{sym.} & 2E_{1212} \end{pmatrix}$$

 $E \in \mathbb{S}^6$ in 3D case

Weak formulation:

Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} e(u)(x)^{\top} \cdot \mathbf{E} \cdot e(v)(x) dx}_{a_{\mathbf{E}}(u, v)} = \underbrace{\int_{\Gamma} f(x)^{\top} v(x) dx}_{I(v)} \quad \forall v \in U.$$

$$E(x) = \rho(x)E_0$$
 with $0 \le \rho(x) \le 1$... topology optimization $E(x) = \rho(x)^p E_0$ with $0 \le \rho(x) \le 1$ $(p = 3)$... SIMP E_0 a given (homogeneous, isotropic) material

Weak formulation:

Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} e(u)(x)^{\top} \cdot \mathbf{E} \cdot e(v)(x) dx}_{\mathbf{a}_{\mathbf{E}}(u, v)} = \underbrace{\int_{\Gamma} f(x)^{\top} v(x) dx}_{I(v)} \quad \forall v \in U.$$

$$E(x) \in (L^{\infty})^{6 \times 6} \dots$$
 free material optimization

Aim:

Given an amount of material, boundary conditions and external load f, find the material (distribution) so that the body is as stiff as possible under f.

Equilibrium

Weak formulation:

Find $u \in U := \{u \in \mathbb{H} | u_{\Gamma_0} = 0\}$ such that

$$\underbrace{\int_{\Omega} e(u)(x)^{\top} \cdot \mathbf{E} \cdot e(v)(x) dx}_{\mathbf{a}_{\mathbf{E}}(u, v)} = \underbrace{\int_{\Gamma} f(x)^{\top} v(x) dx}_{\mathbf{I}(v)} \quad \forall v \in U.$$
strain energy work

Discretization:

$$K(\mathbf{E})u = f,$$
 $K(\mathbf{E}) = \sum_{i=1}^{m} \sum_{j=1}^{G} B_{i,j} \mathbf{E}_{i} \mathbf{B}_{i,j}^{\top}$

$$E = \rho E_0 \text{ (VTS)}, \quad E = \rho^{\rho} E_0 \text{ (SIMP)}, \quad \mathbf{E} \in (L^{\infty})^{6 \times 6} \text{ (FMO)}$$

TO primal problem

$$\begin{aligned} \min_{u,\dots,u^L,\,\rho} \sum_{i=1}^m \rho_i \\ \text{subject to} \\ \underline{\rho} &\leq \rho_i \leq \overline{\rho} \quad i = 1,\dots,m \\ (f^\ell)^T u^\ell &\leq \gamma, \quad \ell = 1,\dots,L \\ K(\rho) u^\ell &= f^\ell, \quad \ell = 1,\dots,L \end{aligned}$$

nonconvex nonlinear programming problem.

TO, reduced primal problem

$$\begin{aligned} & \min_{\rho} \sum_{i=1}^{m} \rho_{i} \\ & \text{subject to} \\ & \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m \\ & (f^{\ell})^{T} K(\rho)^{-1} f^{\ell} \leq \gamma, \quad \ell = 1, \dots, L \end{aligned}$$

- convex nonlinear programming problem
- complexity grows linearly with L

TO, linear SDP primal problem

$$\begin{split} \min_{\rho} \sum_{i=1}^{m} \rho_{i} \\ \text{subject to} \\ \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m \\ \begin{pmatrix} \gamma & (f^{\ell})^{T} \\ f^{\ell} & K(\rho) \end{pmatrix} \succeq 0, \quad \ell = 1, \dots, L \end{split}$$

- linear semidefinite programming problem
- L (very) large and sparse SDP constraints

FMO primal problem

$$\begin{aligned} \min_{u,...,u^L,\,E} \sum_{i=1}^m \mathrm{Tr}(E_i) \\ \text{subject to} \\ E_i \succeq 0, \quad i=1,\ldots,m \\ \underline{\rho} \leq \mathrm{Tr}(E_i) \leq \overline{\rho} \quad i=1,\ldots,m \\ (f^\ell)^T u^\ell \leq \gamma, \quad \ell=1,\ldots,L \\ K(E) u^\ell = f^\ell, \quad \ell=1,\ldots,L \end{aligned}$$

nonlinear nonconvex semidefinite programming problem.

FMO, reduced primal problem

$$\begin{aligned} \min_{E} \sum_{i=1}^{m} \operatorname{Tr}(E_{i}) \\ \text{subject to} \\ E_{i} \succeq 0, \quad i = 1, \dots, m \\ \underline{\rho} \leq \operatorname{Tr}(E_{i}) \leq \overline{\rho}, \quad i = 1, \dots, m \\ (f^{\ell})^{T} K(E)^{-1} f^{\ell} \leq \gamma, \quad \ell = 1, \dots, L \end{aligned}$$

- nonlinear convex semidefinite programming problem
- complexity grows linearly with L.

FMO, linear SDP primal problem

$$\begin{aligned} \min_{E} \sum_{i=1}^{m} \mathrm{Tr}(E_i) \\ \text{subject to} \\ E_i \succeq 0, \quad i = 1, \dots, m \\ \underline{\rho} \leq \mathrm{Tr}(E_i) \leq \overline{\rho}, \quad i = 1, \dots, m \\ \begin{pmatrix} \gamma & (f^{\ell})^T \\ f^{\ell} & \mathcal{K}(E) \end{pmatrix} \succeq 0, \quad \ell = 1, \dots, L \end{aligned}$$

- linear semidefinite programming problem
- L very large and sparse SDP constraints

Summary—TO/FMO primal models

There are two classes of models, one based on the primal and one on the dual formulation of the problem.

Primal formulations

- difficult optimisation problems:
 - nonconvex semidefinite programming (SDP) problem
 - convex nonlinear SDP problem
 - large scale linear SDP problem
- N-SDP does not satisfy the Mangasarian-Fromowitz constraint qualification.

FMO models: additional constraints

So far we considered the "basic" topology optimization problem.

Optimal topology/material can change significantly when we add some important¹ constraints.

- Vibration (self-vibration modes)
- Stability w.r.t. buckling
- Displacement constraints
- Stress constraints

The resulting optimization problem can become much more complicated.

¹Importance depends on the application!

Vibration constraints

The fundamental frequency of the optimal structure is bigger than or equal to a given frequency.

Self-vibrations of the (discretized) structure—eigenvalues of

$$K(E)w = \lambda M(E)w$$

where the mass matrix M(E) has the same sparsity as K(E).

Low vibrations dangerous \rightarrow constraint $\lambda_{\min} \geq \hat{\lambda}$

Equivalently: $K(E) - \hat{\lambda}M(E) \succeq 0$

Large-scale SDP constraints \rightarrow use SDP formulation of TO/FMO

Example—vibration constraint

TO without vibration constraint

Example—vibration constraint

TO without and with vibration constraint

Global stability (buckling) constraints

The GEVP

$$K(E)w = \lambda G(E, u)w$$

where G(E, u) is the geometry stiffness matrix of the structure (depending nonlinearly on E and displacement u).

Buckling constraint:

$$\lambda(E, u) \not\in (0, 1)$$

Buckling constraints in primal FMO

$$K(E) + G(E, u) \succeq 0$$
.

Buckling constraints in reduced primal FMO

$$K(E) + G(E, K^{-1}(E)f) \succeq 0$$
.

Case studies: Tc12 50.000 design variables (sizing), 4 LC + global stability constraints w/o stability constr. density plot displacement buckling mode with stability constr. nder-Universität Erlangen-Nürnberg

Stress constraints

Continuous formulation:

restrict norm
$$\|\sigma(x)\|_{vM}$$
 for all $x \in \Omega$, $\sigma(x) = Ee(u(x))$

Finite element approximation:

we use integral form of stress constraints

$$\int_{\Omega_i} \|\sigma\|_{\mathsf{vM}}^2 \leq \mathsf{s}_{\sigma} |\Omega_i|;$$

The von Mises (semi)norm $\|\cdot\|_{vM}$ defined as

$$\|\sigma\|_{vM}^2 := \sigma^{\top} M \sigma, \text{ with } M = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$

Example: L-shape domain

Example: L-shape domain, TO

For the TO problem, the only way to remove the stress singularity is to change the geometry of the domain, to replace the sharp corner by a smooth arc.

Example: L-shape domain, TO

Figure: Problem TC04-s4, TO, without and with stress constraints.