Model predictive scheduling of semi-cyclic discrete-event systems using switching max-plus linear models

 with an application in railway traffic managementTon J.J. van den Boom
Delft Center for Systems and Control
Delft University of Technology

Email: A.J.J.vandenBoom@tudelft.nl

Thanks to Bart De Schutter, Bart Kersbergen, Gabriel Lopes, Lex Blenkers Marenne van den Muijsenberg, Graziana Cavone

Contents

1st part: Scheduling of semi-cyclic discrete-event systems.

- Switching max-plus linear systems + Dynamic graphs.
- Examples of SMPL systems.
- Scheduling with SMPL systems.
- Model Predictive Scheduling.

2nd part: Application on Railway traffic management.

- Basic Railway traffic model.
- Distributed Model Predictive Scheduling.
- Disruption management.

Part 1: Scheduling of semi-cyclic discrete-event systems.

Scheduling is the process of deciding how to allocate a set of jobs to limited resources over time in such a way that one or more objectives are optimized.

Operational scheduling or rescheduling deals with adaptive on-line scheduling in response to the unexpected events.

Cyclic discrete-event system: Jobs appear in a repatative way.
Semi-cyclic discrete-event system: Changes in jobs and resources per cycle may occur.

Max-Plus Algebra

Define $\varepsilon=-\infty$ and $\mathbb{R}_{\varepsilon}=\mathbb{R} \cup\{\varepsilon\}$.

$$
\begin{aligned}
& x \oplus y=\max (x, y) \quad x \otimes y=x+y \\
& {[A \oplus B]_{i j}=[A]_{i j} \oplus[B]_{i j}=\max \left([A]_{i j},[B]_{i j}\right)} \\
& {[A \otimes C]_{i j}=\bigoplus_{k=1}^{n}[A]_{i k} \otimes[C]_{k j}=\max _{k=1, \ldots, n}\left([A]_{i k}+[C]_{k j}\right)} \\
& {[A \odot B]_{i j}=[A]_{i j}+[B]_{i j}}
\end{aligned}
$$

Let $v \in \mathbb{B}_{\varepsilon}=\{0, \varepsilon\}$ be a max-plus binary variable.
The adjoint variable $\bar{v} \in \mathbb{B}_{\varepsilon}$ is defined as follows:

$$
\bar{v}= \begin{cases}0 & \text { if } v=\varepsilon \\ \varepsilon & \text { if } v=0\end{cases}
$$

Max-plus linear systems

Max-plus linear system:

$$
x(k)=A(k) \otimes x(k-1) \oplus B(k) \otimes u(k)
$$

where
$k \in \mathbb{Z} \quad=$ event counter.
$A \in \mathbb{R}_{\varepsilon}^{n \times n} \quad=$ system matrix in cycle k.
$B \in \mathbb{R}_{\varepsilon}^{n \times p} \quad=$ system matrix in cycle k.

Switching max-plus linear system:

The system can run in different modes $\ell(k) \in\left\{1, \ldots, n_{\mathrm{m}}\right\}$:

SMPL system:

$$
x(k)=A(\ell(k), k) \otimes x(k-1) \oplus B(\ell(k), k) \otimes u(k)
$$

Switching function:

$$
\ell(k)=\phi_{\mathbf{s}}(x(k-1), \ell(k-1), u(k), v(k))
$$

Implicit SMPL system:

$$
x(k)=\left(\bigoplus_{i=0}^{\bar{\mu}} A^{(i)}(\ell(k), k) \otimes x(k-i)\right) \oplus B(\ell(k), k) \otimes u(k)
$$

Dynamic graph (Murota)

Definition:

A dynamic graph

$$
G=\left(G_{0}^{1}, \ldots, G_{n}^{1}, G_{0}^{2}, \ldots, G_{n}^{2}, \ldots, G_{0}^{m}, \ldots, G_{n}^{m}\right)
$$

is a sequence of graphs, where $G_{0}^{k}=\left(X^{k}, E_{0}^{k}\right)$ is a directed graph with only nonpositive circuit weights, and $G_{\mu}^{k}=\left(X^{k}, X^{k-\mu}, E_{\mu}^{k}\right), \mu=1, \ldots, n$ is a directed bipartite graph where E_{μ}^{k} being the set of edges from $X^{k-\mu}$ to X^{k}. The nodes X_{k} represent the state of a system at event step k. The weight of the edge of G_{0}^{k} from node $\left[X^{k}\right]_{j}$ to $\left[X^{k}\right]_{i}$ is equal to $\left[A^{(0)}(\ell(k))\right]_{i j}$, The weight of the edge of G_{μ}^{k} from node $\left[X^{k-\mu}\right]_{j}$ to $\left[X^{k}\right]_{i}$ is equal to $\left[A^{(\mu)}(\ell(k))\right]_{i j}$.

Examples of SMPL systems

- production system
- printer
- legged robot
- container terminal
- railway network

production system

$$
\begin{aligned}
x_{1}(k) & =\max \left(x_{1}(k-1)+d_{1}, u_{1}(k)\right) \\
x_{2}(k) & =\max \left(x_{2}(k-1)+d_{2}, u_{2}(k)\right) \\
x_{3}(k) & =\max \left(x_{1}(k)+d_{1}, x_{3}(k-1)+d_{3}\right) \\
x_{4}(k) & =\max \left(x_{2}(k)+d_{2}, x_{4}(k-1)+d_{4}\right) \\
x_{5}(k) & =\max \left(x_{3}(k)+d_{3}, x_{4}(k)+d_{4}, x_{5}(k-1)+d_{5}\right) \\
y(k) & =x_{5}(k)+d_{5}
\end{aligned}
$$

leading to the following matrices for the first mode:

$$
\begin{gathered}
A^{(0)}(1)=\left[\begin{array}{lllll}
\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
d_{1} & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & d_{2} & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & d_{3} & d_{4} & \varepsilon
\end{array}\right], B(1)=\left[\begin{array}{lll}
0 & \varepsilon \\
\varepsilon & 0 \\
\varepsilon & \varepsilon \\
\varepsilon & \varepsilon \\
\varepsilon & \varepsilon
\end{array}\right] \\
A^{(1)}(1)=\left[\begin{array}{lllll}
d_{1} & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & d_{2} & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & d_{3} & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & d_{4} & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon & d_{5}
\end{array}\right]
\end{gathered}
$$

Second mode:

$$
\begin{aligned}
x_{1}(k) & =\max \left(x_{1}(k-1)+d_{1}, u_{1}(k)\right) \\
x_{2}(k) & =\max \left(x_{2}(k-1)+d_{2}, u_{2}(k)\right) \\
x_{3}(k) & =\max \left(x_{2}(k)+d_{2}, x_{3}(k-1)+d_{3}\right) \\
x_{4}(k) & =\max \left(x_{1}(k)+d_{1}, x_{4}(k-1)+d_{4}\right) \\
x_{5}(k) & =\max \left(x_{3}(k)+d_{3}, x_{4}(k)+d_{4}, x_{5}(k-1)+d_{5}\right) \\
y(k) & =x_{5}(k)+d_{5}
\end{aligned}
$$

System matrices for the second mode:

$$
A^{(0)}(2)=\left[\begin{array}{ccccc}
\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & d_{2} & \varepsilon & \varepsilon & \varepsilon \\
d_{1} & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & d_{3} & d_{4} & \varepsilon
\end{array}\right], \quad \begin{gathered}
\\
(1)(2)=A^{(1)}(1) \\
B(2)=B(1)
\end{gathered}
$$

The dynamic graph for mode 1 in cycle k and mode 2 in cycle $k+1$:

Printer

Duplex printing:

$$
\begin{aligned}
x_{1}(k) & =\max \left(u(k)+\tau_{1}, x_{3}(k-2)+\tau_{2}\right) \\
x_{2}(k) & =\max \left(x_{1}(k)+\tau_{2}+\tau_{3}, x_{2}(k-1)+\tau_{2}+\tau_{3}\right) \\
x_{3}(k) & =\max \left(x_{1}(k+1)+\tau_{2}, x_{2}(k)+\tau_{4}\right) \\
x_{4}(k) & =x_{3}(k)+\tau_{2}+\tau_{5} \\
A^{(0)}(1) & =\left[\begin{array}{cccc}
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\tau_{2}+\tau_{3} & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \tau_{4} & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \tau_{2}+\tau_{5} & \varepsilon
\end{array}\right], A^{(2)}(1)=\left[\begin{array}{llll}
\varepsilon & \varepsilon & \tau_{2} & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon
\end{array}\right] \\
A^{(1)}(1) & =\left[\begin{array}{llll}
\varepsilon & \varepsilon & \tau_{2} & \varepsilon \\
\varepsilon & \tau_{2}+\tau_{3} & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon
\end{array}\right], A^{(-1)}(1)=\left[\begin{array}{llll}
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\tau_{2} & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon
\end{array}\right], B(1)=\left[\begin{array}{l}
\tau_{1} \\
\varepsilon \\
\varepsilon \\
\varepsilon
\end{array}\right]
\end{aligned}
$$

Simplex printing:

$$
\begin{aligned}
x_{1}(k) & =x_{3}(k-2) \\
x_{2}(k) & =x_{2}(k-1) \\
x_{3}(k) & =\max \left(x_{1}(k+1)+\tau_{2}, u(k)+\tau_{1}\right) \\
x_{4}(k) & =x_{3}(k)+\tau_{2}+\tau_{5} \\
A^{(0)}(1) & =\left[\begin{array}{llll}
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \tau_{2}+\tau_{5} & \varepsilon
\end{array}\right], A^{(2)}(1)=\left[\begin{array}{llll}
\varepsilon & \varepsilon & 0 & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon
\end{array}\right] \\
A^{(1)}(1) & =\left[\begin{array}{llll}
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & 0 & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon
\end{array}\right], A^{(-1)}(1)=\left[\begin{array}{llll}
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\tau_{2} & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon
\end{array}\right], B(1)=\left[\begin{array}{c}
\varepsilon \\
\varepsilon \\
\tau_{1} \\
\varepsilon
\end{array}\right]
\end{aligned}
$$

Legged robots

$$
5
$$

3

Tripod gait $\mathcal{L}_{1}=\{2,3,6\} \quad$ and $\quad \mathcal{L}_{2}=\{1,4,5\}$
Tetrapod gait: $\mathcal{L}_{1}=\{1,4\}, \mathcal{L}_{2}=\{3,6\}$ and $\mathcal{L}_{3}=\{2,5\}$.

$$
x(k)=\left[\begin{array}{c|c}
\varepsilon & \tau_{f} \otimes E \\
\hline P & \varepsilon
\end{array}\right] \otimes x(k) \oplus\left[\begin{array}{c|c}
E & \varepsilon \\
\hline \tau_{g} \otimes E \oplus Q & E
\end{array}\right] \otimes x(k-1)
$$

where

$$
\begin{aligned}
& {[P]_{p q}= \begin{cases}\tau_{\Delta}, & \forall j \in\{1, m-1\} ; \forall p \in \mathcal{L}_{j+1} ; \forall q \in \mathcal{L}_{j} \\
\varepsilon & \text { otherwise }\end{cases} } \\
& {[Q]_{p q}= \begin{cases}\tau_{\Delta}, & \forall p \in \mathcal{L}_{1} ; \forall q \in \mathcal{L}_{m} \\
\varepsilon & \text { otherwise }\end{cases} }
\end{aligned}
$$

Tripod gait $\mathcal{L}_{1}=\{2,3,6\}$ and $\mathcal{L}_{2}=\{1,4,5\}$.
Tetrapod gait: $\mathcal{L}_{1}=\{1,4\}, \mathcal{L}_{2}=\{3,6\}$ and $\mathcal{L}_{3}=\{2,5\}$.

System matrices for tripod gait:

$$
A^{(0)}(1)=\left[\begin{array}{llllll|cccccc}
\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \tau_{f} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \tau_{f} & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \tau_{f} & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \tau_{f} & \varepsilon & \varepsilon \\
\varepsilon & \tau_{f} & \varepsilon \\
\varepsilon & \tau_{f} \\
\hline \varepsilon & \tau_{\Delta} & \tau_{\Delta} & \varepsilon & \varepsilon & \tau_{\Delta} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon \\
\varepsilon & \varepsilon \\
\varepsilon & \tau_{\Delta} & \tau_{\Delta} & \varepsilon & \varepsilon & \tau_{\Delta} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \tau_{\Delta} & \tau_{\Delta} & \varepsilon & \varepsilon & \tau_{\Delta} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon
\end{array}\right]
$$

and

$$
A^{(1)}(1)=\left[\begin{array}{cccccc|cccccc}
0 & \varepsilon \\
\varepsilon & 0 & \varepsilon \\
\varepsilon & \varepsilon & 0 & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & 0 & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon & 0 & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 0 & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\hline \tau_{g} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 0 & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\tau_{\Delta} & \tau_{g} & \varepsilon & \tau_{\Delta} & \tau_{\Delta} & \varepsilon & \varepsilon & 0 & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\
\tau_{\Delta} & \varepsilon & \tau_{g} & \tau_{\Delta} & \tau_{\Delta} & \varepsilon & \varepsilon & \varepsilon & 0 & \varepsilon & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \tau_{g} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 0 & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \varepsilon & \varepsilon & \tau_{g} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 0 & \varepsilon \\
\tau_{\Delta} & \varepsilon & \varepsilon & \tau_{\Delta} & \tau_{\Delta} & \tau_{g} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 0
\end{array}\right]
$$

Container terminal

$k \quad=$ be the number of the container,
$x_{\mathrm{q}, i}(k)=$ time of loading k th container on AGV at point B,
$x_{\mathrm{s}, i}(k)=$ time of unloading k th container from AGV at point C.

Define:
$Q(k)=$ quay crane that is handles container k,
$V(k)=$ AGV that handles container k,
$S(k)=$ stack crane that handles container k.
$\tau_{\mathrm{q}}(k) \quad=$ time quay crane needs to lift container from the ship,
$\tau_{\mathrm{s}}(k) \quad=$ time stack crane needs to put container in the yard,
$\tau_{\mathrm{u}, j, i}(k)=$ transp. time of unloaded vehicle from stack crane j to quay crane i,
$\tau_{1, j, i}(k)=$ transp. time of loaded vehicle from quay crane i to stack crane j.
Define the state

$$
\begin{aligned}
x(k) & =\left[\begin{array}{llllll}
x_{\mathrm{q}}^{T}(k) & x_{\mathrm{s}}^{T}(k)
\end{array}\right]^{T} \\
& =\left[\begin{array}{llllll}
x_{q, 1}(k) & \cdots & x_{\mathrm{q}, N_{\mathrm{q}}}(k) & x_{s, 1}(k) & \cdots & x_{\mathrm{s}, N_{\mathrm{s}}}(k)
\end{array}\right]^{T}
\end{aligned}
$$

For $x_{\mathrm{q}, i}(k)$ and $x_{\mathrm{s}, j}(k)$ we derive

$$
\begin{aligned}
& x_{\mathrm{q}, i}(k)=\left\{\begin{array}{r}
\left.\max \left(x_{\mathrm{q}, i}(k-1)+\tau_{\mathrm{q}}(k), x_{\mathrm{s}, j}(k-m(k))+\tau_{\mathrm{u}, j, i}(k)\right)\right) \\
\text { if } i=Q(k), j=S(k-m(k)) \\
x_{\mathrm{q}, i}(k-1) \quad \text { if } i \neq Q(k)
\end{array}\right. \\
& x_{\mathrm{s}, j}(k)=\left\{\begin{array}{r}
\max \left(x_{\mathrm{q}, i}(k)+\tau_{1, i, j}(k), x_{\mathrm{s}, j}(k-1)\right) \\
\text { if } j=S(k) \text { and } i=Q(k) \\
x_{\mathrm{s}, i}(k-1) \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where

$$
m(k)=\max _{\ell>0}\{\ell \mid V(k-\ell)=V(k)\},
$$

State matrices $A_{i}, i=0,1, \ldots$:

$$
\begin{aligned}
& {\left[A^{(0)}\right]_{i j}(k)= \begin{cases}\tau_{\mathrm{l}, i, j}(k) & \text { if } j=S(k) \text { and } i=Q(k) \\
\varepsilon & \text { otherwise }\end{cases} } \\
& {\left[A^{(1)}(k)\right]_{i j}= \begin{cases}\tau_{\mathrm{q}}(k) & \text { if } i=j, i=Q(k), i \leq N_{\mathrm{q}} \\
\tau_{\mathrm{q}}(k) & \text { if } i=j, i=N_{\mathrm{q}}+S(k), i>N_{\mathrm{q}} \\
0 & \text { if } i=j, i \neq Q(k) \\
\tau_{\mathrm{u}, j, i}(k) & \text { if } i \neq j, m(k)=1, i=Q(k), \\
\varepsilon & \begin{array}{ll}
j=S(k-1)
\end{array} \\
{\left[A^{(\mu)}(k)\right]_{i j}} & = \begin{cases}\tau_{\mathbf{u}, j, i}(k) & \text { if } i \neq j, m(k)=\mu, i=Q(k), \\
\varepsilon & \text { otherwise }\end{cases} \\
\varepsilon \quad \text { otherwe }\end{cases} }
\end{aligned}
$$

Consider a small container terminal with $N_{q}=N_{v}=N_{s}=2$.

$$
[Q(k-1) Q(k) Q(k+1) Q(k+2)]=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right]
$$

$$
[V(k-1) V(k) V(k+1) V(k+2)]=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right]
$$

$$
[S(k-1) S(k) S(k+1) S(k+2)]=\left[\begin{array}{llll}
1 & 2 & 2 & 1
\end{array}\right]
$$

Scheduling with SMPL systems

```
Semi-cyclic discrete event systems
M jobs L alternative routes
n operations }N\mathrm{ resources
```

Derive Switching Max-Plus-Linear model with 3 basic types of decisions:

- Routing
- Ordering
- Synchronization

Routing

Job with ($p-1$) operations

Routing equations:

$$
\begin{gathered}
x_{2}(k) \geq x_{1}(k)+\tau_{1}(k) \\
x_{3}(k) \geq x_{2}(k)+\tau_{2}(k) \\
\vdots \\
x_{p}(k) \geq x_{p-1}(k)+\tau_{p-1}(k)
\end{gathered}
$$

In max-plus matrix notation this can be written as

$$
\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{p}(k)
\end{array}\right] \geq\left[\begin{array}{cccc}
\varepsilon & \varepsilon & \ldots & \varepsilon \\
\tau_{1}(k) & \varepsilon & & \varepsilon \\
\vdots & \ddots & \ddots & \vdots \\
\varepsilon & \ldots & \tau_{p-1}(k) & \varepsilon
\end{array}\right] \otimes\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{p}(k)
\end{array}\right]
$$

or in short notation

$$
x(k) \geq A_{\mathrm{job}}(k) \otimes x(k)
$$

Multiple cycles state equation:

$$
A_{\mathrm{job}}(k)=\bigoplus_{\mu=1}^{L} w_{\mu} \otimes A_{\mathrm{job}}^{(\mu)}(k) \otimes x(k-\mu)
$$

L alternative routes $\longrightarrow \quad L$ different system matrices:

$$
A_{\mathrm{job}, \ell}^{(\mu)}(k) \quad \text { for } \quad \ell=1, \ldots, L
$$

Max-plus binary variables $\omega_{i}(k), i=1, \ldots, L$ such that for route ℓ we have

$$
\omega_{\ell}(k)=0 \quad \text { and } \quad \omega_{i}(k)=\varepsilon \quad \text { for } \quad i \neq \ell
$$

Job-system matrices:

$$
A_{\mathrm{job}}^{(\mu)}(\omega(k), k)=\bigoplus_{\ell=1}^{L} \omega_{\ell}(k) \otimes A_{\mathrm{job}, \ell}^{(\mu)}(k)
$$

Ordering operations on resources

n operations
N resources
L alternative routes
$\omega_{\ell}(k)$ routing variables

$$
\left[P_{\ell}\right]_{i j}= \begin{cases}0 & \text { if operation } i \text { and operation } j \text { are on same resource } \\ \varepsilon & \text { if operation } i \text { and operation } j \text { are not on same resource }\end{cases}
$$

Matrix $P(\omega(k))$ for selection of the resources:

$$
P(\omega(k))=\bigoplus_{\ell=1}^{L} \omega(k) \otimes P_{\ell}
$$

Separation matrix

$$
[H]_{i, j}(k)= \begin{cases}\tau_{i, j}^{\mathrm{o}}(k) & \text { if operations } i \text { and } j \text { may be on same resource } \\ \varepsilon & \text { if operations } i \text { and } j \text { are } \underline{\text { never on same resource }}\end{cases}
$$

Order max-plus binary decision matrices
$\left[Z^{(\mu)}\right]_{i, j}(k)=$
$\begin{cases}0 & \text { if operation } i \text { in cycle } k \text { is after operation } j \text { in cycle } k+\mu \\ \varepsilon & \text { if operation } i \text { in cycle } k \text { is before operation } j \text { in cycle } k+\mu\end{cases}$
Ordering system matrices

$$
A_{\text {ord }}^{(\mu)}\left(\omega(k), \gamma^{(\mu)}(k), k\right)=P(\omega(k)) \odot Z^{((\mu))}\left(\gamma^{\mu}(k)\right) \odot H(k)
$$

Ordering constraints in the system

$$
x(k) \geq \bigoplus_{\mu=\mu_{\min }}^{\mu_{\max }} A_{\text {ord }}^{(\mu)}\left(\omega(k), \gamma^{(\mu)}(k), k\right) \otimes x(k-\mu)
$$

Synchronization of operations

Synchronization between operations in different jobs, e.g.

- synchronization of legs in a legged robot.
- two trains on platform give passengers opportunity to change trains.

Define synchronization modes $\ell=1, \ldots, L_{\text {sync }}$.

$$
\left[A_{\mathrm{syn}, \ell}^{(\mu)}(k)\right]_{i j}=\left\{\begin{array}{lc}
\tau_{i, j}^{\mathrm{s}}(k) & \text { if operation } j \text { in cycle } k \text { may be scheduled after } \\
\varepsilon & \quad \text { operation } i \text { in cycle } k+\mu \\
\varepsilon & \text { elsewhere }
\end{array}\right.
$$

Define max-plus binary synchronization variable $s(k)$.
The synchronization system matrix is given by

$$
A_{\mathrm{syn}}^{(\mu)}(\sigma(k), k)=\bigoplus_{\ell=0}^{L_{\mathrm{syn}}} \sigma_{\ell}(k) \otimes A_{\mathrm{syn}, \ell}^{(\mu)}(k)
$$

and the operation synchronization constraints become:

$$
x(k) \geq \bigoplus_{\mu=1}^{\bar{\mu}} A_{\mathrm{syn}}^{(\mu)}(s(k), k) \otimes x(k-\mu) .
$$

Overall MPL system

Max-plus binary decision variables

- Routing:

$$
w(k)
$$

- Ordering: $\gamma^{(\mu)}(k)$
- Synchronization: $s(k)$

Stack all decision variables into one vector

$$
v(k)=\left[\begin{array}{c}
w(k) \\
\gamma^{(0)}(k) \\
\vdots \\
\gamma^{(\bar{\mu})}(k) \\
s(k)
\end{array}\right] \in\left(\mathbb{B}_{\varepsilon}\right)^{L_{\mathrm{tot}}}
$$

where $L_{\text {tot }}$ is the total number of scheduling variables.

Define overall system matrix

$$
\begin{aligned}
A^{(\mu)}(v(k), k) & =A_{\mathrm{job}}^{(\mu)}(\omega(k), k) \oplus A_{\mathrm{ord}}^{(\mu)}\left(\omega(k), \gamma^{(\mu)}(k), k\right) \oplus A_{\mathrm{syn}}^{(\mu)}(\sigma(k)) \\
& =\bigoplus_{\ell=1}^{L_{\mathrm{tot}}} v_{\ell}(k) \otimes A_{\mathrm{tot}, \ell}^{(\mu)}(k)
\end{aligned}
$$

Matrix $A^{(\mu)}$ is max-plus affine in the control variables $v(k)$. The scheduling model is as follows

$$
x(k)=\bigoplus_{\mu=0}^{\bar{\mu}} A^{(\mu)}(v(k), k) \otimes x(k-\mu) \oplus r(k)
$$

Control vector $v(k)$ decides on mode of operation.

Model Predictive Scheduling

Receding horizon principle

- Not schedule for the complete task
- In several iterations with prediction horizon (only jobs in nearest future)

Model Predictive Scheduling problem at time t :

$$
\min _{v(k+j, t),} \min _{j=0, \ldots, N_{\mathrm{p}}-1} J(k, t)
$$

subject to

$$
x(k+j, k+j, t)=\bigoplus_{\mu=0}^{\bar{\mu}} A^{(\mu)}(v(k+j, t), k+j, t) \otimes x(k+j-\mu, t) \oplus r(k+j)
$$

where the performance index $J(k, t)$ is usually given by

$$
\begin{aligned}
J(k, t) & =\delta \max _{i=1, \ldots, n} x_{i}\left(k+N_{\mathrm{p}}, t\right)+\sum_{j=0}^{N_{\mathrm{p}}-1} \sum_{i=1}^{n} \kappa_{j, i} x_{i}(k+j, t) \\
& +\sum_{j=0}^{N_{\mathrm{p}}-1} \sum_{i=1}^{n} \lambda_{i} \max \left(x_{i}(k+j, t)-x_{\mathrm{d}, i}(k+j), 0\right) \\
& -\sum_{j=0}^{N_{\mathrm{p}}-1} \sum_{m=1}^{n_{u}} \rho_{j, m} u_{m}(k+j, t)+\sum_{l=1}^{L_{\text {tot }}} \sigma_{j, l} v_{l}^{b}(k+j, t) .
\end{aligned}
$$

where

$$
v_{l}^{b}(k+j, t)= \begin{cases}0 & \text { for } v_{l}(k+j, t)=\varepsilon \\ 1 & \text { for } v_{l}(k+j, t)=0\end{cases}
$$

is a conventional binary variable.

Mixed-Integer Linear Programming

The model predictive scheduling problem can be recast into a mixed-integer linear programming problem as follows:

- Use the following approximation

$$
v_{i}(k, t)=\beta\left(1-v_{i}^{b}(k, t)\right)
$$

where $\beta \ll 0$ is a very large (in absolute value) negative number.

- Max-plus constraints become linear constraints.
- Object function becomes linear function.

There exist fast and reliable solvers (e.g. CPLEX, Xpres) for MILP.

Part II: Application on Railway traffic management

- Dutch railway network
- Minimize sum of delays
- Disturbances: small perturbations - handled by reordering trains.
- Disruptions: blocked tracks lead to large decrease in network capacity.
- Develop decision support systems for the dispatchers.
- Model predictive scheduling approach.
- Centralized MPS \longrightarrow Distributed MPS.
- Macroscopic model with some specific microscopic features.

Railway traffic model

A max-plus linear model is used to predict the effects of the dispatching actions.

- local management of routing in stations and interlocking area.
- station and interlocking area are modeled as single point.
- track between points modeled as single segment.
- block sections/signaling not modeled explicitly.
- time separation \rightarrow headway constraints.

State: $\quad x(k)=\left[\begin{array}{c}d_{1}(k) \\ \vdots \\ d_{n}(k) \\ a_{1}(k) \\ \vdots \\ a_{n}(k)\end{array}\right]$

Max-plus linear

Running time constraint models a train traversing a track.
Continuity constraint models a train dwelling at a station.
Headway constraints ensure a safe distance between trains on the same track. Connection constraint models the transfers at stations.

The general form of these four constraints is:

$$
x_{i} \geq x_{j}+\tau_{i j}
$$

$x_{i}, x_{j} \in \mathbb{R}$ are departure and arrival times at stations. $\tau_{i j} \in \mathbb{R}$ is the minimum process time (dwell, running, headway, separation, or connection time).

Timetable constraints: For $r_{i} \in \mathbb{R}$ is the scheduled departure time

$$
x_{i} \geq r_{i}
$$

Switching max-plus linear model

For changing the order of the trains we adapt constraints with control variables

$$
\begin{align*}
& x_{i} \geq x_{j}+\tau_{i j}+\left(\gamma_{i j}+\omega_{i j}\right) \tag{1}\\
& x_{j} \geq x_{i}+\tau_{j i}+\left(\bar{\gamma}_{i j}+\omega_{i j}\right), \tag{2}
\end{align*}
$$

where $\gamma_{i j}$ and $\omega_{i j}$ are max-plus binary control variables. Ordering variable $\gamma_{i j}$ "enables" and "disables" constraints. Routing variable $\omega_{i j}$ decides if train i and j use the same track.

Model predictive scheduling of Dutch railway network

Dutch railway network:

- 326 train runs
- 1930 continuous variables
- 2744 binary variables
- 22050 constraints

Distributed Model Predictive Scheduling

- MILP is split up into several interacting smaller MILPs
- Each smaller MILP is solved separately
- Coordination between smaller MILPs to reach good traffic control
- For $N_{p}=75$ minutes: computation time is less than 60 seconds.

Birmingham - June 18, 2018

Disruption management

- Define disrupted region
- Cancelling trains
- Short-turn trains
- Shunting trains
- Platform assignment
- Distributed model predictive scheduling of disrupted network

Discussion

- semi-cyclic discrete-event systems can be modeled as SMPL systems
- switching max-plus linear systems in the context scheduling
- scheduling problem can be recast as a mixed-integer linear program
- rescheduling of the Dutch disturbed railway network
- rescheduling of the Dutch disrupted railway network

1. Cancelling trains
2. Short-turn trains
3. Shunting trains
4. Platform assignment

- future work:

1. study the effect of noise in SMPL systems
2. reduce computation effort
