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Part 1: Scheduling of semi-cyclic discrete-event systems.

Scheduling is the process of deciding how to allocate a set of jobs to limited
resources over time in such a way that one or more objectives are optimized.

Operational scheduling or rescheduling deals with adaptive on-line scheduling
in response to the unexpected events.

Cyclic discrete-event system: Jobs appear in a repatative way.

Sema-cyclic discrete-event system: Changes in jobs and resources per cycle
may occur.
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Max-Plus Algebra

Define e = —co and R, = R U {&}.

r @y =max(x,y) rTRQY=x+Yy
[A® Bli; = [A]i; & |Bli; = max([A]i;, [Blij)

n

[A®Cly =D [Ain @ [Cly = max ([Alix + [Clx)

[A© Bli; = [Alij + [Bly
Let v € B. = {0,¢} be a max-plus binary variable.
The adjoint variable v € B, is defined as follows:
0 ifv=c¢e
e if v=20

V=

Birmingham — June 18, 2018



Max-plus linear systems

Max-plus linear system:
(k) =Ak) @ x(k—1) ® B(k) @ u(k)

where
kel = event counter.
A e RIX™ = system matrix in cycle k.
B e RI'*P = system matrix in cycle k.
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Switching max-plus linear system:

The system can run in different modes ¢(k) € {1,... ,ny}:

SMPL system:

Switching function:
U(k) = ds(x(k — 1), 6(k = 1), u(k),v(k))

Implicit SMPL system:

(k) = (@ AD k), k) @ z(k — i)) D BU(k), k) @ ulk)
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Dynamic graph (Murota)

Definition:
A dynamic graph
G =(Gg, ...,G,, G5, -, Gr G GRY)

is a sequence of graphs, where GE = (X* EF) is a directed graph with only
nonpositive circuit weights, and Gk (XF, Xk Ek) p=1,....,nis a
directed bipartite graph where Eﬁ belng the set of edges from X*~# to XF.
The nodes X, represent the state of a system at event step k. The weight of
the edge of G% from node [X*], to [X*]; is equal to [A(D(£(k))];;, The weight
of the edge of G} from node [X"~#]; to [X*]; is equal to (AW (L(K))]ss.
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production system

printer

legged robot

container terminal

railway network

Examples of SMPL systems
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production system
$1(l€) $3(l€)
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leading to the following matrices for the first mode:

E € € € €
E € € € €
AN =|d, e e e ¢ , B(1)

e do e € ¢
e € d3 di €

di € € ¢

e do € €

AN (1) e e dg €

e € € dg

E € € €
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Second mode:

A0 (2) =

E € € € €
E € € € €
e dy € € €

di € € € =«
€ E d3 d4 E
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(w2(k — 1) + da, ua(k))
max(za(k) + da, z3(k — 1) + ds)

(1

(23

AW (2) = AW(1)
B(2) = B(1)
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The dynamic graph for mode 1 in cycle k¥ and mode 2 in cycle k£ + 1:

mode 1 mode 2
y(k) § y(k+1) §
1‘5(%— 1) 935(’QJ x5k +1) l
w4(k = 1) /\m(k) w4k + 13/
© Y '
r3(k —1) wxg3(k) N3k +1)
O '\AJ >
ro(k —1) | za(k) lfﬂz(k + 1)
© 'Y ™
vy (k—1) (k) 21 (k+1)
O >0 >0
uy (k) ug(k) uyp(k+1) ug(k + 1)
@) @)
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Printer

er(k), 2s(k) TS ea(k)

1

T4

’\ '
T2 T5
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Duplex printing:

x4(k) = x3(k) + 720 + 75
I € € € g |
A(O)(l) To+ T3 € € € | A(Q)(l)
€ T4 € €
i 13 € T2+ T5 € |
[ £ € To € ] [ ¢
A(l)(l) E To+7T3 € € | A(_l)(l) €
€ € e € T9
| € € £ € | €
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E £ i
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Rzq(k—3) Rag(k—2) Ralk—1) R zal) R zak+1)
OCCQ(k—Z >(\a}2(k—1 >(\£C2(k) >OCI}2(I€—|—1 ><\x2(k—|—2
A A A A A
fﬂ3(k—3)\fﬂ3(k—2) wg(k—l)\x:a(k) \$3(k+1)
O— 0> O—— O——FO0——>O0——0
b1 (k—2) by (k1) 1 (k) oy (k+1) b1 (k+2)
Ou(k—2) Ou(k—1) O u(k) Ou(k+1) Ou(k+2)
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Simplex printing:

M & o, O O M O, O

D & O , M M M O

M & O, O

g

|, AP

g
T &£ i i
g | i g
"], Ay = ©
€ 72
g i i g
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C\) :L’4(k:—3)

:L‘2(k—1

Y

Qzy(k—2)

vor2(k)

Qaq(k—1) Q

:L‘2(]€+1

L 74 (k)

A

C\) :B4k—|—1)

»()

oy (k—1)

Ou(k—1)

»()
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Legged robots

Tripod gait £ = {2,3,6} and Lo = {1,4,5}.
Tetrapod gait: £, ={1,4} , Lo =1{3,6} and L3=1{2,5}.
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E ‘ Tf QF E ‘ E
(k) = R xz(k) P Raxlk —1
() P | € () w®E6Q | E ( )
where
)
TA, V] & {1,m—1};Vp€£j+1;Vq€£j
[P]pq = < _
€ otherwise
\
4
[Q]pq = 9 .
g otherwise
\

Tripod gait £1 = {2,3,6} and L, = {1,4,5}.
Tetrapod gait: £1 ={1,4} , L5 =1{3,6} and L3={2,5}.
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System matrices for tripod gait:

E € € € € € |Tf € € € € €
E € € € € € |€ T € € € €
E € € €€ € |€ € T € € €
E € € € € €| € € € Tf € €
E € € € € €| € € € € Tf €
4 (1)= E € € € € €| € € € € T¥
E TA TA € € TA| E € € € € €
E € € € € €| € € € € € €
E € € € € €| € € € € € €
ETA TA € € TA| E € € € € ¢
ETA TA € € TA| E € € € € ¢
E € € € € €| € € € € € €
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and

0 € € €€ € €| € € € € ¢
e 0 € €€ € €|e € € € € ¢
e € 0 e € €l € € € € ¢
e € €€ 0 € €l € € € € ¢
e € € € 0 el|le € € € € ¢
e € € € € 0|e e € € € ¢
g € € € € ¢€|0 ¢ € € ¢ ¢
TA Tg € TA TAo €| 0 € € ¢ ¢
TA € Tg TA TA € | € 0 ¢ € ¢
e € € T4 € €le € € 0 e ¢
e € € € T4 €l € € ¢ 0 ¢
TA € € TaA TaA T4|€ € € € ¢ 0
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Container terminal

quay cranes AGVs stack cranes

A B C D
k = be the number of the container,
zq.i:(k) = time of loading kth container on AGV at point B,
zsi(k) = time of unloading kth container from AGV at point C.
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Define:

Q(k)
V(k)
S(k)

Tq(k)
7s(k)

Tu,j,i(K)
71,5, (k)
Define the state

= quay crane that is handles container £,
= AGV that handles container k,
— stack crane that handles container k.

= time quay crane needs to lift container from the ship,

= time stack crane needs to put container in the yard,

(k)

= transp. time of unloaded vehicle from stack crane 5 to quay crane 1,
= transp. time of loaded vehicle from quay crane ¢ to stack crane j.
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For x.(k) and zs (k) we derive

i

max (2q.i(k—1) + 7q(k), 2o 3 (k=m(k)) + 7o 3.:(k)) )
Ta,i(k) = 9 if i=Q(k),j=S(k—m(k))
\xq,z‘(k —1) if i 7# Q(k)

’

max (xq,z(k) + Tl,i,j(k)a .CUS’j(]C — 1))
2 (k) = 4 if j = S(k)andi = Q(k)

rsi(k —1) otherwise
\ Y

where

(k) = max{(|V (k — ) = V(k)}
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State matrices A;, 1 = 0,

1,...

’

ni(k) if 7=95(k)andi=Q(k)

£ otherwise
\

’

Tq(k) i i=j,i=Q(k),i < Ny
ro(k)  if i=j,i=N,+S(k),i >N,

0 if i =75,i# Q(k)

Tuga(k) it i # j,m(k) =14 = Q(k),
j=5(k—1)

€ otherwise

j=5Sk—u)

£ otherwise
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Consider a small container terminal with N, = N, = Ng = 2.

: Qk—1) Q(k) Q(k+1) Q(k+2) — 1219

Vik—1) V(E) V(k+1) V(k+2) |=]1 2 1 2

| S(k=1) S(R) S(h+1) S(k+2) | =| 12 2 1
xl(k — 1) :I:l(li)h a:l(k + i)ﬁ :I:l(k + g)ﬁ :I:l(k + é)
xo(k — 1& zo (k) %\ zo(k + 2) 63)
O ») »O »() »O
z3(k —1) z3(k + 3)
O >0

x4(k - 1) $4(k +3)
O >
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Scheduling with SMPL systems

Semi-cyclic discrete event systems
M jobs L alternative routes
n operations N resources

Derive Switching Max-Plus-Linear model with 3 basic types of decisions:
e Routing
e Ordering
e Synchronization

Birmingham — June 18, 2018
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Routing

Job with (p—1) operations

Qfl(k)

’7'1(]6) 7_2<k)
Routing equations:

Tp(k) > 2pa(k) + 7pa(k)

Birmingham — June 18, 2018
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In max-plus matrix notation this can be written as

1V

Tl(k)

Multiple cycles state equation:

JOb

GB wy © Al (k)

E
E

E $1(k)
Bk
Tp1(k) € | 2p(K)

) Q@ x(k—p)
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L alternative routes —— L different system matrices:
A}g&)e(k) for £=1,...,L
Max-plus binary variables w;(k), 2 = 1,..., L such that for route ¢ we have
we(k) =0 and w;(k) =€ for i #/

Job-system matrices:

AB (w(k), k) = @D welk) @ A (k)

Birmingham — June 18, 2018
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Ordering operations on resources

{133(]€)
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n operations

N resources

L alternative routes
we(k) routing variables

P 0 if operation ¢ and operation j are on same resource
Clij — : : : : :
e if operation 7 and operation j are not on same resource

Matrix P(w(k)) for selection of the resources:

Birmingham — June 18, 2018
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Separation matrix

(@)

70.(k) if operations ¢ and j may be on same resource
H)i(k) = { )

if operations ¢ and j are never on same resource

Order max-plus binary decision matrices
(2], (k) =
0 if operation ¢ in cycle k is after operation j in cycle k+pu
e if operation 7 in cycle k is before operation j in cycle k+p

Ordering system matrices
Aa(w(k), /W (k), k) = P(w(k)) © 20D (v (k) © H(k)

ord

Ordering constraints in the system

Mmax

2(k) > P AL(w(k), v (k). k) @ 2(k — )
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Synchronization of operations

resource 1
ZCl(k' ZCQ(]CQ
h ~._ /////v
/’/// \\\\\\ .
z3(k) resource 2 za(k)

Synchronization between operations in different jobs, e.g.
e synchronization of legs in a legged robot.
e two trains on platform give passengers opportunity to change trains.
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Define synchronization modes ¢ =1, ..., Lgync.

y

Tfj(k) if operation j in cycle £ may be scheduled after

(k)]ij = 4 operation i in cycle k4 pu

G elsewhere

Define max-plus binary synchronization variable s(k).
The synchronization system matrix is given by

A (o (k) k) = @D oulk) @ AW (k)

and the operation synchronization constraints become:
@ AL (s(k).F) © a(k ).
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36



Overall MPL system

Max-plus binary decision variables

e Routing: w(k)
e Ordering: v (1) (k)
e Synchronization:  s(k)

Stack all decision variables into one vector

(k) = ; c (B )Lt

where Ly is the total number of scheduling variables.
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Define overall system matrix

AW (p(k), k) = AW

job ord
Lot w
= D vilk) ® AL (k)
=1

Matrix A" is max-plus affine in the control variables v (k).
The scheduling model is as follows

v(k) =P AW (v(k), k) ® x(k — p) ® r(k)

Control vector v(k) decides on mode of operation.

Birmingham — June 18, 2018
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Model Predictive Scheduling

Receding horizon principle
e Not schedule for the complete task
e In several iterations with prediction horizon (only jobs in nearest future)

Model Predictive Scheduling problem at time t:

min J(k, )
v(k+j,t), j=0,...,Np—1

subject to

it
v(k+j, k+3,t) = @ AW (v(k+5,1), k+j, ) © a(k+j—p,t) & r(k+5)
u=0

Birmingham — June 18, 2018
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where the performance index J(k,t) is usually given by

Np—1 n
J(hyt) =0 max wi(k+Npt)+ > Y hiwik+it)
7=0 121=1
Np—1 p
— Z Z)\z’ max (%‘(kJrJ} t) — xa,i(k+J), 0)
j=0 i=1
]\/Tp_1 Ny Ltot
— Z ijmum k+]7 )+Zaj,lvlb(k+j7t)°
j=0 m=1 =1
where
0 foruj(k+7,t) =¢
ok + 1) = (B
1 for v (k+j,t) =0

is a conventional binary variable.
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Mixed-Integer Linear Programming

The model predictive scheduling problem can be recast into a mixed-integer
linear programming problem as follows:

e Use the following approximation
vi(k,t) = B (1= v (k, 1))
where 5 < 0 is a very large (in absolute value) negative number.
e Max-plus constraints become linear constraints.

e Object function becomes linear function.

There exist fast and reliable solvers (e.g. CPLEX, Xpres) for MILP.
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Part 1l: Application on Railway traffic management

e Dutch railway network

e Minimize sum of delays

e Disturbances: small perturbations - handled by reordering trains.

e Disruptions: blocked tracks lead to large decrease in network capacity.
e Develop decision support systems for the dispatchers.

e Model predictive scheduling approach.

e Centralized MPS —— Distributed MPS.
e Macroscopic model with some specific microscopic features.

Birmingham — June 18, 2018
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Railway traffic model

A max-plus linear model is used to predict the effects of the dispatching
actions.
e local management of routing in stations and interlocking area.
e station and interlocking area are modeled as single point.
e track between points modeled as single segment.
e block sections/signaling not modeled explicitly.
e time separation — headway constraints.
dy (k)

State: z(k) =
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Max-plus linear

Running time constraint models a train traversing a track.
Continuity constraint models a train dwelling at a station.

Headway constraints ensure a safe distance between trains on the same track.
Connection constraint models the transfers at stations.

The general form of these four constraints is:
Ti 2 Tj 4 Tij

z;, T; € R are departure and arrival times at stations. 7;; € R is the minimum
process time (dwell, running, headway, separation, or connection time).

Timetable constraints: For r; € R is the scheduled departure time
xI; > T;

Birmingham — June 18, 2018 44



Switching max-plus linear model

For changing the order of the trains we adapt constraints with control variables

v 2 i+ Tij + (vig + wij) (1)
T > i+ T+ (Vij + wij), (2)

where 7;; and w;; are max-plus binary control variables. Ordering variable -;;
“enables” and “disables” constraints. Routing variable w;; decides if train ¢

and j use the same track.
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Model predictive scheduling of Dutch railway network

Dutch railway network:

e 326 train runs

e 1930 continuous variables
e 2744 binary variables

e 22050 constraints

Distributed Model Predictive Scheduling

e MILP is split up into several interacting smaller MILPs

e Each smaller MILP is solved separately

e Coordination between smaller MILPs to reach good traffic control
e For N, = 75 minutes: computation time is less than 60 seconds.

Birmingham — June 18, 2018

46



Birmingham — June 18, 2018

47



Delay reduction (%)

22

2157

T T T T T

£ O 4

21+

O+

20.5 )

N
o
T

19.5

o
[{s]

(a)

18.5

18

17.5

TSR R T 0 L 5 1 i papel

17

10

10' 10
Computation time (s)

Birmingham — June 18, 2018

N, =75 min
N, = 60 min
N, = 45 min
N, = 30 min

48



Disruption management

e Define disrupted region
e Cancelling trains

e Short-turn trains
e Shunting trains
e Platform assignment

e Distributed model predictive scheduling of disrupted network
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Platform number
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Discussion

e semi-cyclic discrete-event systems can be modeled as SMPL systems
e switching max-plus linear systems in the context scheduling
e scheduling problem can be recast as a mixed-integer linear program
e rescheduling of the Dutch disturbed railway network
e rescheduling of the Dutch disrupted railway network

1. Cancelling trains

2.Short-turn trains

3.Shunting trains

4. Platform assignment
e future work:

1.study the effect of noise in SMPL systems

2.reduce computation effort
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