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Part 1: Scheduling of semi-cyclic discrete-event systems.

Scheduling is the process of deciding how to allocate a set of jobs to limited

resources over time in such a way that one or more objectives are optimized.

Operational scheduling or rescheduling deals with adaptive on-line scheduling

in response to the unexpected events.

Cyclic discrete-event system: Jobs appear in a repatative way.

Semi-cyclic discrete-event system: Changes in jobs and resources per cycle

may occur.
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Max-Plus Algebra

Define ε = −∞ and Rε = R ∪ {ε}.

x⊕ y = max(x, y) x⊗ y = x+ y

[A⊕ B]ij = [A]ij ⊕ [B]ij = max([A]ij, [B]ij)

[A⊗ C]ij =
n⊕

k=1

[A]ik ⊗ [C]kj = max
k=1,...,n

([A]ik + [C]kj)

[A⊙ B]ij = [A]ij + [B]ij

Let v ∈ Bε = {0, ε} be a max-plus binary variable.

The adjoint variable v̄ ∈ Bε is defined as follows:

v̄ =







0 if v = ε

ε if v = 0
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Max-plus linear systems

Max-plus linear system:

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k)

where

k ∈ Z = event counter.

A ∈ R
n×n
ε = system matrix in cycle k.

B ∈ R
n×p
ε = system matrix in cycle k.
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Switching max-plus linear system:

The system can run in different modes ℓ(k) ∈ {1, . . . , nm}:

SMPL system:

x(k) = A(ℓ(k), k)⊗ x(k − 1)⊕B(ℓ(k), k)⊗ u(k)

Switching function:

ℓ(k) = φs(x(k − 1), ℓ(k − 1), u(k), v(k))

Implicit SMPL system:

x(k) =
( µ̄
⊕

i=0

A(i)(ℓ(k), k)⊗ x(k − i)
)

⊕ B(ℓ(k), k)⊗ u(k)

Birmingham – June 18, 2018 6



Dynamic graph (Murota)

Definition:

A dynamic graph

G = (G1
0, . . . , G

1
n, G

2
0, . . . , G

2
n, . . . , G

m
0 , . . . , Gm

n )

is a sequence of graphs, where Gk
0 = (Xk, Ek

0 ) is a directed graph with only

nonpositive circuit weights, and Gk
µ = (Xk,Xk−µ, Ek

µ), µ = 1, . . . , n is a

directed bipartite graph where Ek
µ being the set of edges from Xk−µ to Xk.

The nodes Xk represent the state of a system at event step k. The weight of

the edge of Gk
0 from node [Xk]j to [Xk]i is equal to [A(0)(ℓ(k))]ij, The weight

of the edge of Gk
µ from node [Xk−µ]j to [Xk]i is equal to [A(µ)(ℓ(k))]ij.

Birmingham – June 18, 2018 7



Examples of SMPL systems

• production system

• printer

• legged robot

• container terminal

• railway network
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production system

M1

M2

M3

M4

M5

s

s

s
s

s
su1(k)

u2(k)

x1(k)

x2(k)

x3(k)

x4(k)

x5(k)
y(k)

x1(k) = max(x1(k − 1) + d1, u1(k))

x2(k) = max(x2(k − 1) + d2, u2(k))

x3(k) = max(x1(k) + d1, x3(k − 1) + d3)

x4(k) = max(x2(k) + d2, x4(k − 1) + d4)

x5(k) = max(x3(k) + d3, x4(k) + d4, x5(k − 1) + d5)

y(k) = x5(k) + d5
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leading to the following matrices for the first mode:

A(0)(1) =











ε ε ε ε ε

ε ε ε ε ε

d1 ε ε ε ε

ε d2 ε ε ε

ε ε d3 d4 ε











, B(1) =











0 ε

ε 0

ε ε

ε ε

ε ε











A(1)(1) =











d1 ε ε ε ε

ε d2 ε ε ε

ε ε d3 ε ε

ε ε ε d4 ε

ε ε ε ε d5










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Second mode:

x1(k) = max(x1(k − 1) + d1, u1(k))

x2(k) = max(x2(k − 1) + d2, u2(k))

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

x4(k) = max(x1(k) + d1, x4(k − 1) + d4)

x5(k) = max(x3(k) + d3, x4(k) + d4, x5(k − 1) + d5)

y(k) = x5(k) + d5

System matrices for the second mode:

A(0)(2) =











ε ε ε ε ε

ε ε ε ε ε

ε d2 ε ε ε

d1 ε ε ε ε

ε ε d3 d4 ε











,
A(1)(2) = A(1)(1)

B(2) = B(1)
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The dynamic graph for mode 1 in cycle k and mode 2 in cycle k + 1:

x5(k − 1)

x4(k − 1)

x3(k − 1)

x2(k − 1)

x1(k − 1)

y(k)

x5(k)

x4(k)

x3(k)

x2(k)

x1(k)

u2(k)u1(k)

y(k + 1)

x5(k + 1)

x4(k + 1)

x3(k + 1)

x2(k + 1)

x1(k + 1)

u2(k + 1)u1(k + 1)

mode 1
︷ ︸︸ ︷

mode 2
︷ ︸︸ ︷
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Printer

ITSu(k) x1(k), x3(k)

x2(k)

x4(k)

IM

τ1 τ2 τ5

τ3

τ4
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Duplex printing:

x1(k) = max(u(k) + τ1, x3(k − 2) + τ2)

x2(k) = max(x1(k) + τ2 + τ3, x2(k − 1) + τ2 + τ3)

x3(k) = max(x1(k + 1) + τ2, x2(k) + τ4)

x4(k) = x3(k) + τ2 + τ5

A(0)(1) =








ε ε ε ε

τ2 + τ3 ε ε ε

ε τ4 ε ε

ε ε τ2 + τ5 ε







, A(2)(1) =








ε ε τ2 ε

ε ε ε ε

ε ε ε ε

ε ε ε ε








A(1)(1) =








ε ε τ2 ε

ε τ2 + τ3 ε ε

ε ε ε ε

ε ε ε ε







, A(−1)(1) =








ε ε ε ε

ε ε ε ε

τ2 ε ε ε

ε ε ε ε







, B(1) =








τ1

ε

ε

ε







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u(k−2) u(k−1) u(k) u(k+1) u(k+2)

x1(k−2) x1(k−1) x1(k) x1(k+1) x1(k+2)

x2(k−2) x2(k−1) x2(k) x2(k+1) x2(k+2)

x3(k−3) x3(k−2) x3(k−1) x3(k) x3(k+1)

x4(k−3) x4(k−2) x4(k−1) x4(k) x4k+1)
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Simplex printing:

x1(k) = x3(k − 2)

x2(k) = x2(k − 1)

x3(k) = max(x1(k + 1) + τ2, u(k) + τ1)

x4(k) = x3(k) + τ2 + τ5

A(0)(1) =








ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε τ2 + τ5 ε







, A(2)(1) =








ε ε 0 ε

ε ε ε ε

ε ε ε ε

ε ε ε ε








A(1)(1) =








ε ε ε ε

ε 0 ε ε

ε ε ε ε

ε ε ε ε







, A(−1)(1) =








ε ε ε ε

ε ε ε ε

τ2 ε ε ε

ε ε ε ε







, B(1) =








ε

ε

τ1

ε







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u(k−2) u(k−1) u(k)u(k+1) u(k+2)

x1(k−2) x1(k−1) x1(k) x1(k+1) x1(k+2)

x2(k−2) x2(k−1) x2(k) x2(k+1) x2(k+2)

x3(k−3) x3(k−2) x3(k−1) x3(k) x3(k+1)

x4(k−3) x4(k−2) x4(k−1) x4(k) x4k+1)
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Legged robots

2

4

6

1

3

5

x(k) =

[

t(k)

a(k)

]

=













t1(k)
...

t6(k)

a1(k)
...

a6(k)













Tripod gait L1 = {2, 3, 6} and L2 = {1, 4, 5} .

Tetrapod gait: L1 = {1, 4} , L2 = {3, 6} and L3 = {2, 5} .
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x(k) =

[

ε τf ⊗ E

P ε

]

⊗ x(k)⊕

[

E ε
τg ⊗ E ⊕Q E

]

⊗ x(k − 1)

where

[P ]pq =







τ∆, ∀j ∈ {1,m− 1}; ∀p ∈ Lj+1; ∀q ∈ Lj

ε otherwise

[Q]pq =







τ∆, ∀p ∈ L1;∀q ∈ Lm

ε otherwise

Tripod gait L1 = {2, 3, 6} and L2 = {1, 4, 5} .

Tetrapod gait: L1 = {1, 4} , L2 = {3, 6} and L3 = {2, 5} .
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System matrices for tripod gait:

A(0)(1)=



























ε ε ε ε ε ε τf ε ε ε ε ε

ε ε ε ε ε ε ε τf ε ε ε ε

ε ε ε ε ε ε ε ε τf ε ε ε

ε ε ε ε ε ε ε ε ε τf ε ε

ε ε ε ε ε ε ε ε ε ε τf ε

ε ε ε ε ε ε ε ε ε ε ε τf

ε τ∆ τ∆ ε ε τ∆ ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε

ε τ∆ τ∆ ε ε τ∆ ε ε ε ε ε ε

ε τ∆ τ∆ ε ε τ∆ ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε


























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and

A(1)(1)=



























0 ε ε ε ε ε ε ε ε ε ε ε

ε 0 ε ε ε ε ε ε ε ε ε ε

ε ε 0 ε ε ε ε ε ε ε ε ε

ε ε ε 0 ε ε ε ε ε ε ε ε

ε ε ε ε 0 ε ε ε ε ε ε ε

ε ε ε ε ε 0 ε ε ε ε ε ε

τg ε ε ε ε ε 0 ε ε ε ε ε

τ∆ τg ε τ∆ τ∆ ε ε 0 ε ε ε ε

τ∆ ε τg τ∆ τ∆ ε ε ε 0 ε ε ε

ε ε ε τg ε ε ε ε ε 0 ε ε

ε ε ε ε τg ε ε ε ε ε 0 ε

τ∆ ε ε τ∆ τ∆ τg ε ε ε ε ε 0


























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x1(k − 1)

x7(k − 1)

x2(k − 1)

x8(k − 1)

x3(k − 1)

x9(k − 1)

x4(k − 1)

x10(k − 1)

x5(k − 1)

x11(k − 1)

x6(k − 1)

x12(k − 1)

x1(k)

x7(k)

x2(k)

x8(k)

x3(k)

x9(k)

x4(k)

x10(k)

x5(k)

x11(k)

x6(k)

x12(k)

x1(k + 1)

x7(k + 1)

x2(k + 1)

x8(k + 1)

x3(k + 1)

x9(k + 1)

x4(k + 1)

x10(k + 1)

x5(k + 1)

x11(k + 1)

x6(k + 1)

x12(k + 1)
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Container terminal

② ② ⑦ ⑦

quay cranes AGVs stack cranes

A B C D

k = be the number of the container,

xq,i(k) = time of loading kth container on AGV at point B,

xs,i(k) = time of unloading kth container from AGV at point C.

Birmingham – June 18, 2018 23



Define:

Q(k) = quay crane that is handles container k,

V (k) = AGV that handles container k,

S(k) = stack crane that handles container k.

τq(k) = time quay crane needs to lift container from the ship,

τs(k) = time stack crane needs to put container in the yard,

τu,j,i(k) = transp. time of unloaded vehicle from stack crane j to quay crane i,

τl,j,i(k) = transp. time of loaded vehicle from quay crane i to stack crane j.

Define the state

x(k) =
[

xT
q (k) xT

s (k)
]T

=
[

xq,1(k) · · · xq,Nq(k) xs,1(k) · · · xs,Ns(k)
]T
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For xq,i(k) and xs,j(k) we derive

xq,i(k) =







max
(

xq,i(k−1) + τq(k), xs,j(k−m(k)) + τu,j,i(k))
)

if i = Q(k), j = S(k−m(k))

xq,i(k − 1) if i 6= Q(k)

xs,j(k) =







max
(
xq,i(k) + τl,i,j(k), xs,j(k − 1))

if j = S(k) and i = Q(k)

xs,i(k − 1) otherwise

where

m(k) = max
ℓ>0

{ℓ|V (k − ℓ) = V (k)},
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State matrices Ai, i = 0, 1, . . .:

[A(0)]ij(k) =







τl,i,j(k) if j = S(k) and i = Q(k)

ε otherwise

[A(1)(k)]ij =







τq(k) if i = j, i = Q(k), i ≤ Nq

τq(k) if i = j, i = Nq + S(k), i > Nq

0 if i = j, i 6= Q(k)

τu,j,i(k) if i 6= j,m(k) = 1, i = Q(k),

j = S(k−1)

ε otherwise

[A(µ)(k)]ij =







τu,j,i(k) if i 6= j,m(k) = µ, i = Q(k),

j = S(k−µ)

ε otherwise
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Consider a small container terminal with Nq = Nv = Ns = 2.

[

Q(k−1) Q(k) Q(k+1) Q(k+2)
]

=
[

1 2 1 2
]

[

V (k−1) V (k) V (k+1) V (k+2)
]

=
[

1 2 1 2
]

[

S(k−1) S(k) S(k+1) S(k+2)
]

=
[

1 2 2 1
]

x1(k − 1)

x2(k − 1)

x3(k − 1)

x4(k − 1)

x1(k)

x2(k)

x3(k)

x4(k)

x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

x1(k + 2)

x2(k + 2)

x3(k + 2)

x4(k + 2)

x1(k + 3)

x2(k + 3)

x3(k + 3)

x4(k + 3)
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Scheduling with SMPL systems

Semi-cyclic discrete event systems
M jobs L alternative routes
n operations N resources

Derive Switching Max-Plus-Linear model with 3 basic types of decisions:

• Routing

• Ordering

• Synchronization
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Routing

Job with (p−1) operations

1 2 p−1. . .x1(k) x2(k) xp−1(k) xp(k)

τ1(k) τ2(k) τp−1(k)
Routing equations:

x2(k) ≥ x1(k) + τ1(k)

x3(k) ≥ x2(k) + τ2(k)
...

xp(k) ≥ xp−1(k) + τp−1(k)
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In max-plus matrix notation this can be written as








x1(k)

x2(k)
...

xp(k)







≥








ε ε . . . ε

τ1(k) ε ε
... . . . . . . ...

ε . . . τp−1(k) ε







⊗








x1(k)

x2(k)
...

xp(k)








or in short notation

x(k) ≥ Ajob(k)⊗ x(k)

Multiple cycles state equation:

Ajob(k) =
L⊕

µ=1

wµ ⊗A
(µ)
job(k)⊗ x(k−µ)
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L alternative routes −→ L different system matrices:

A
(µ)
job,ℓ(k) for ℓ = 1, . . . , L

Max-plus binary variables ωi(k), i = 1, . . . , L such that for route ℓ we have

ωℓ(k) = 0 and ωi(k) = ε for i 6= ℓ

Job-system matrices:

A
(µ)
job(ω(k), k) =

L⊕

ℓ=1

ωℓ(k)⊗A
(µ)
job,ℓ(k)
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Ordering operations on resources

resource

1

2

3

x5(k)

x3(k)

x1(k)

x6(k)

x4(k)

x2(k)
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n operations

N resources

L alternative routes

ωℓ(k) routing variables

[Pℓ]ij =







0 if operation i and operation j are on same resource

ε if operation i and operation j are not on same resource

Matrix P (ω(k)) for selection of the resources:

P (ω(k)) =
L⊕

ℓ=1

ω(k)⊗ Pℓ
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Separation matrix

[H]i,j(k) =

{

τoi,j(k) if operations i and j may be on same resource

ε if operations i and j are never on same resource

Order max-plus binary decision matrices

[Z(µ)]i,j(k) ={

0 if operation i in cycle k is after operation j in cycle k+µ

ε if operation i in cycle k is before operation j in cycle k+µ

Ordering system matrices

A
(µ)
ord(ω(k), γ

(µ)(k), k) = P (ω(k))⊙ Z((µ))(γµ(k))⊙H(k)

Ordering constraints in the system

x(k) ≥

µmax⊕

µ=µmin

A
(µ)
ord(ω(k), γ

(µ)(k), k)⊗ x(k − µ)
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Synchronization of operations

resource 1

resource 2

1

3

x3(k)

x1(k)

x4(k)

x2(k)

Synchronization between operations in different jobs, e.g.

• synchronization of legs in a legged robot.

• two trains on platform give passengers opportunity to change trains.
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Define synchronization modes ℓ = 1, . . . , Lsync.

[A
(µ)
syn,ℓ(k)]ij =







τ si,j(k) if operation j in cycle k may be scheduled after

operation i in cycle k+µ

ε elsewhere

Define max-plus binary synchronization variable s(k).

The synchronization system matrix is given by

A(µ)
syn(σ(k), k) =

Lsyn⊕

ℓ=0

σℓ(k)⊗A
(µ)
syn,ℓ(k)

and the operation synchronization constraints become:

x(k) ≥

µ̄
⊕

µ=1

A(µ)
syn(s(k), k)⊗ x(k − µ).
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Overall MPL system

Max-plus binary decision variables

• Routing: w(k)

• Ordering: γ(µ)(k)

• Synchronization: s(k)

Stack all decision variables into one vector

v(k) =











w(k)

γ(0)(k)
...

γ(µ̄)(k)

s(k)











∈ (Bε)
Ltot

where Ltot is the total number of scheduling variables.
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Define overall system matrix

A(µ)(v(k), k) = A
(µ)
job(ω(k), k)⊕A

(µ)
ord(ω(k), γ

(µ)(k), k)⊕A(µ)
syn(σ(k))

=

Ltot⊕

ℓ=1

vℓ(k)⊗A
(µ)
tot,ℓ(k)

Matrix A(µ) is max-plus affine in the control variables v(k).

The scheduling model is as follows

x(k) =

µ̄
⊕

µ=0

A(µ)(v(k), k)⊗ x(k − µ)⊕ r(k)

Control vector v(k) decides on mode of operation.
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Model Predictive Scheduling

Receding horizon principle

• Not schedule for the complete task

• In several iterations with prediction horizon (only jobs in nearest future)

Model Predictive Scheduling problem at time t:

min
v(k+j,t), j=0,...,Np−1

J(k, t)

subject to

x(k+j, k+j, t) =

µ̄
⊕

µ=0

A(µ)(v(k+j, t), k+j, t)⊗ x(k+j−µ, t)⊕ r(k+j)
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where the performance index J(k, t) is usually given by

J(k, t) = δ max
i=1,...,n

xi(k+Np, t) +

Np−1
∑

j=0

n∑

i=1

κj,i xi(k+j, t)

+

Np−1
∑

j=0

n∑

i=1

λimax
(

xi(k+j, t)− xd,i(k+j) , 0
)

−

Np−1
∑

j=0

nu∑

m=1

ρj,m um(k+j, t) +

Ltot∑

l=1

σj,l v
♭
l (k+j, t).

where

v♭l (k + j, t)=







0 for vl(k+j, t) = ε

1 for vl(k+j, t) = 0

is a conventional binary variable.
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Mixed-Integer Linear Programming

The model predictive scheduling problem can be recast into a mixed-integer

linear programming problem as follows:

• Use the following approximation

vi(k, t) = β (1− v♭i(k, t))

where β ≪ 0 is a very large (in absolute value) negative number.

• Max-plus constraints become linear constraints.

• Object function becomes linear function.

There exist fast and reliable solvers (e.g. CPLEX, Xpres) for MILP.
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Part II: Application on Railway traffic management

• Dutch railway network

• Minimize sum of delays

• Disturbances: small perturbations - handled by reordering trains.

• Disruptions: blocked tracks lead to large decrease in network capacity.

• Develop decision support systems for the dispatchers.

• Model predictive scheduling approach.

• Centralized MPS −→ Distributed MPS.

• Macroscopic model with some specific microscopic features.
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Railway traffic model

A max-plus linear model is used to predict the effects of the dispatching

actions.

• local management of routing in stations and interlocking area.

• station and interlocking area are modeled as single point.

• track between points modeled as single segment.

• block sections/signaling not modeled explicitly.

• time separation → headway constraints.

State: x(k) =













d1(k)
...

dn(k)

a1(k)
...

an(k)












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Max-plus linear

Running time constraint models a train traversing a track.

Continuity constraint models a train dwelling at a station.

Headway constraints ensure a safe distance between trains on the same track.

Connection constraint models the transfers at stations.

The general form of these four constraints is:

xi ≥ xj + τij

xi, xj ∈ R are departure and arrival times at stations. τij ∈ R is the minimum

process time (dwell, running, headway, separation, or connection time).

Timetable constraints: For ri ∈ R is the scheduled departure time

xi ≥ ri
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Switching max-plus linear model

For changing the order of the trains we adapt constraints with control variables

xi ≥ xj + τij + (γij + ωij) (1)

xj ≥ xi + τji + (γ̄ij + ωij), , (2)

where γij and ωij are max-plus binary control variables. Ordering variable γij

“enables” and “disables” constraints. Routing variable ωij decides if train i

and j use the same track.
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Model predictive scheduling of Dutch railway network

Dutch railway network:

• 326 train runs

• 1930 continuous variables

• 2744 binary variables

• 22050 constraints

Distributed Model Predictive Scheduling

• MILP is split up into several interacting smaller MILPs

• Each smaller MILP is solved separately

• Coordination between smaller MILPs to reach good traffic control

• For Np = 75 minutes: computation time is less than 60 seconds.
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Np = 75 min

Np = 60 min

Np = 45 min

Np = 30 min
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Disruption management

• Define disrupted region

• Cancelling trains

• Short-turn trains

• Shunting trains

• Platform assignment

• Distributed model predictive scheduling of disrupted network
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Discussion

• semi-cyclic discrete-event systems can be modeled as SMPL systems

• switching max-plus linear systems in the context scheduling

• scheduling problem can be recast as a mixed-integer linear program

• rescheduling of the Dutch disturbed railway network

• rescheduling of the Dutch disrupted railway network

1.Cancelling trains

2. Short-turn trains

3. Shunting trains

4.Platform assignment

• future work:

1. study the effect of noise in SMPL systems

2. reduce computation effort
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