HRI for assisted tele-manipulation: combining autonomous grasp planning with haptic cues

Maxime Adjigble

Extreme Robotics Lab, University of Birmingham, UK

Rustam Stolkin

Professor of Robotics Royal Society Industry Fellow in Nuclear Robotics

Maxime Adjigble

Senior Robotic Engineer PhD Student

Extreme Robotics Laboratory

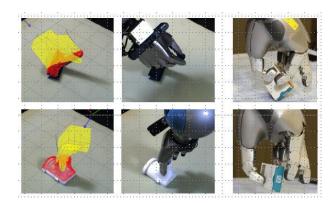
- Leading a £42 million fund for the National Centre for Nuclear Robotics (NCNR)
- Opened new 1000 sq ft Laboratory in the Birmingham, UK
- 10 PhD Students, 10 Postdocs

NCNR website: https://www.ncnr.org.uk/

ERL Website: https://www.birmingham.ac.uk/research/activity/metallurgy-materials/robotics

About ERL

Extreme Robotics Laboratory

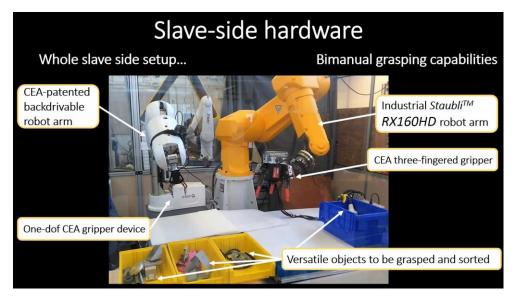


Expertise

- **Mobile Robotics**
- **Robot Control**
- **Robotic Grasping**
- **Human Robot Collaboration**
- **Machine Vision**

KAERI Korea Atomic Energy Research Institute

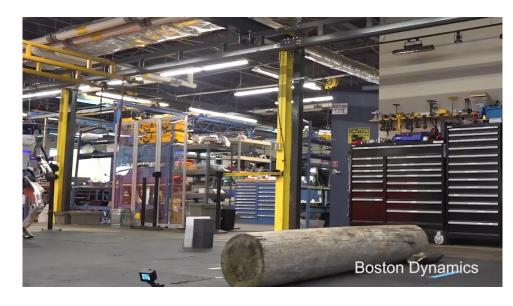
Extreme Robotics Laboratory

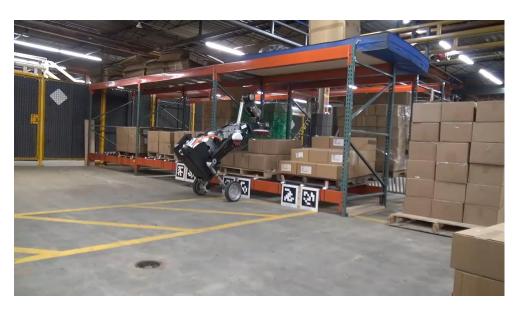


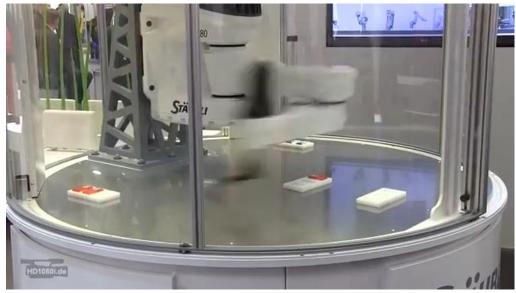
Recent Projects

- Bimanual Teleoperation with novel Grippers (ROMANS CEA)
- HRI Assisted Tele-manipulation (ROMANS ERL/NNL)
- Autonomous Laser Cutting (5KW) in Active Nuclear Cell

Extreme Robotics Laboratory





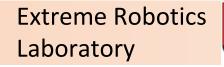


Human robot Interaction (Goal)

- Intuitive interaction
- Mutual assistance
- Collaboration
- Use the strength of one to compensate the weaknesses of the other
- Solve difficult problems that can't be solved either by the robot or the human alone

Human robot Interaction (Reality)

- Steep Learning curve for operators
- Prior knowledge of robotics
- Initial training required
- Deep 3D understanding
- Requires medium to high mental effort
- Not intuitive
- Human has to adapt to an imperfect system

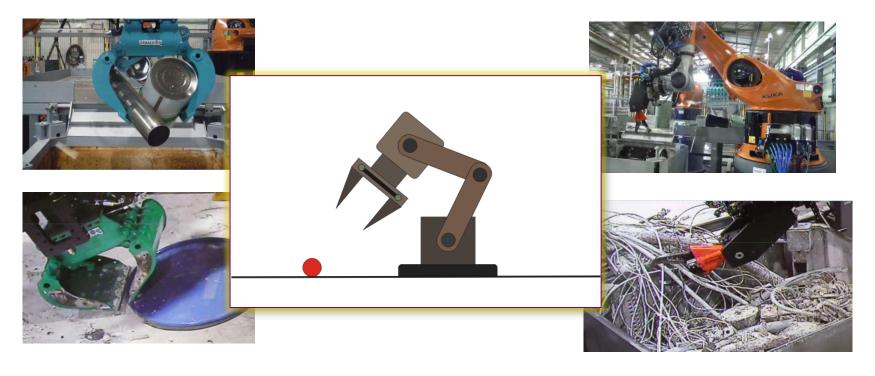


Key differences:

Human	Robot
Flexible	Rigid/stiff
Slow	Fast
Light	Heavy
Dexterous	Clumsy
Slow thinking	Fast computation
High level Reasoning	Low level reasoning

How to exploit the differences to make an overall better system?

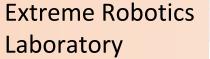
Case Study: Tele-manipulation



Necessity of advanced robotic technologies (full or semi- autonomy)

- Very interesting/complex manipulative tasks Quite slow and painstaking with teleoperation
- Reduce the safety risks on human workers
- Most importantly: operational cost reduction and increase in productivity

Tele-manipulation



Input device: Natural Hand movements

Scene perception: Scene cameras

Force Feedback: None

Input device: Haptic device

Scene perception: Direct view

Force Feedback: Yes

Tele-manipulation

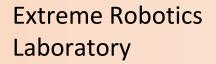
Extreme Robotics Laboratory

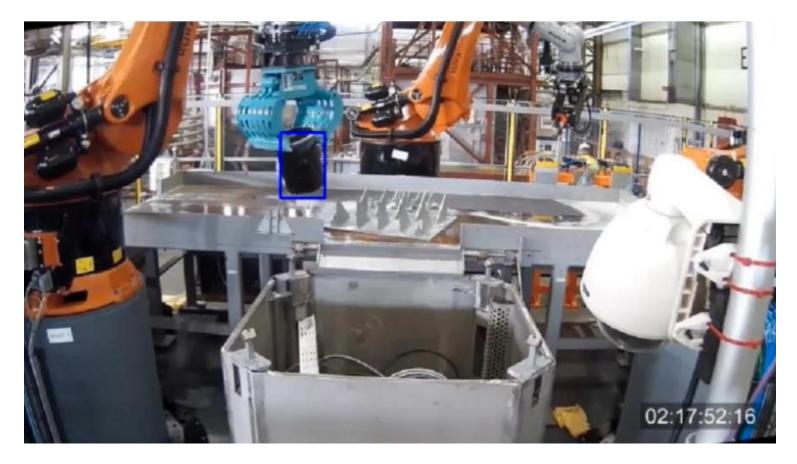
Input device: Haptic device

Scene perception: Scene cameras

Force Feedback: Yes

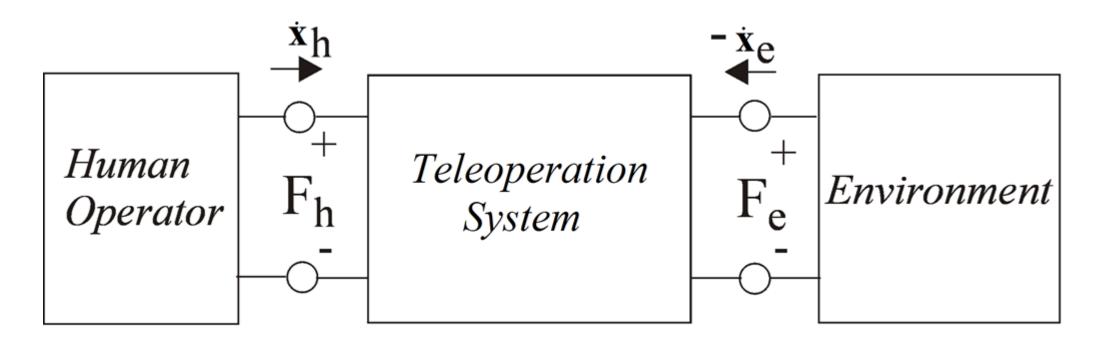
Tele-manipulation



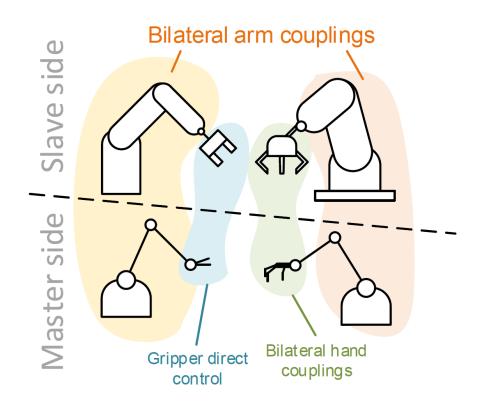


State of the Art Tele-manipulation in the Nuclear Industry

Input device: Joysticks Scene perception: Scene cameras Force Feedback: No



- 1. Operator uses an input device
- 2. Controls a remote or collocated robot
- Receive visual and/or haptic feedback from robot's environment



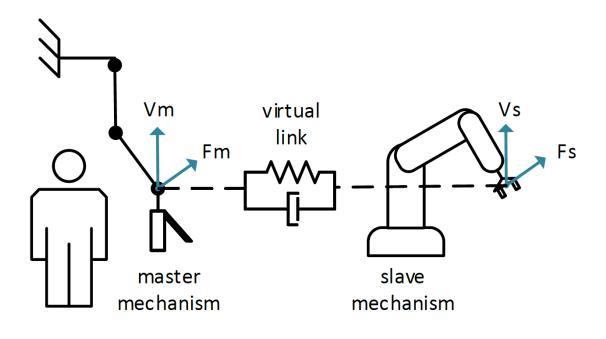


Fig. 7. Basic principle of bilateral coupling

- Generic controller
- No task related information used

- Robotic grasping of cluttered objects remain an open research problem
- Classical grasping methods require detailed knowledge of objects' E.g. shape, mass, friction coefficients etc.
- Learning approaches seek to encode a more direct link but require
 - large training data (some more and some less)
 - prototypical grasps to be taught beforehand ...

- Robotic grasping of cluttered objects remain an open research problem
- Classical grasping methods require detailed knowledge of objects' E.g. shape, mass, friction coefficients etc.
- Learning approaches seek to encode a more direct link but require
 - large training data (some more and some less)
 - prototypical grasps to be taught beforehand ...

We proposed two methods:

Single shot learning Model-free Learning-free (LoCoMo)

Extreme Robotics Laboratory

Marek Kopicki et al.

One shot learning and generation of dexterous grasps for novel objects (IJRR 2015)

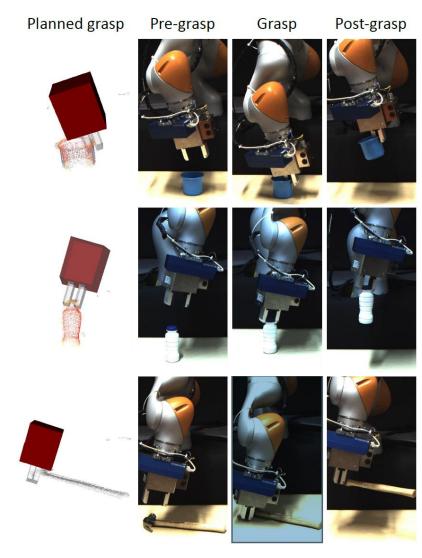
- Learning on single object, generalise on new unseen objects
- Arbitrary shape
- Deformable
- Moderately cluttered heaps

Maxime Adjigble et al.

Model-free and learning-free grasping by local contact moment matching (IROS 2018)

- Different gripper geometry
- Unknown objects
- Arbitrary shape
- Deformable
- Moderately cluttered heaps

Extreme Robotics Laboratory

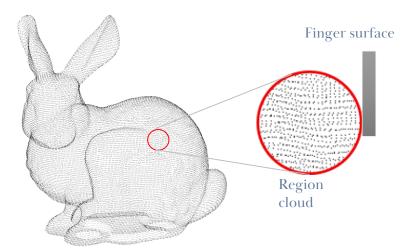


Object	Success Rate 1^{st} Grasp (5 Trials)
bleach cleanser	80% (4/5)
racquetball	100% (5/5)
blue cup	$80\% \ (4/5)$
aluminium profile	$100\% \ (5/5)$
plastic bottle	100% (5/5)
bamboo bowl	$100\% \ (5/5)$
spring clamp	100% (5/5)
electric hand drill	$80\% \ (4/5)$
gas knob	100% (5/5)
golf ball	100% (5/5)
hammer	100% (5/5)
plastic lemon	$80\% \ (4/5)$
mustard container	$100\% \ (5/5)$
plastic nectarine	$100\% \ (5/5)$
gray pipe	100% (5/5)
potted meat can	$40\% \ (2/5)$
screwdriver	100% (5/5)
plastic strawberry	100% (5/5)
multi-head screwdriver	100% (5/5)
white pipe	$60\% \ \ (3/5)$
wood block	100% (5/5)
Success Rate	91.43 % (96/105)

Model-free and learning-free grasping tested (YCB Object Dataset)

Extreme Robotics
Laboratory

LoCoMo:

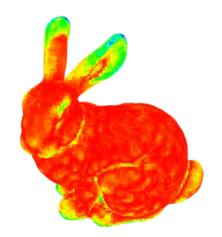


$$n_{\rho} = M_{\rho}^{0}(\xi) - X$$

$$M_{\rho}^{0}(\xi) = \frac{1}{N} \sum_{n=1}^{N} X_{i}$$

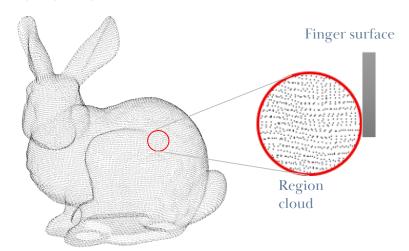
$$oldsymbol{arepsilon} = oldsymbol{n}_
ho^1 - oldsymbol{n}_
ho^2$$

$$C_{\rho} = ((2\pi)^n |\Sigma|)^{\frac{1}{2}} \phi(\varepsilon; \vec{0}, \Sigma)$$



Extreme Robotics Laboratory

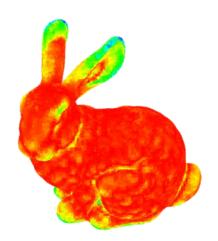
LoCoMo:



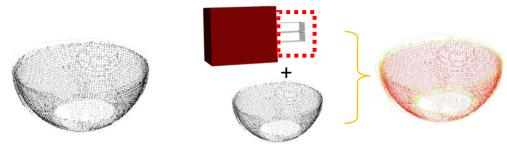
$$C_{\rho} = ((2\pi)^n |\Sigma|)^{\frac{1}{2}} \phi(\varepsilon; \vec{0}, \Sigma)$$

$$C_i = \frac{1}{N_s} \sum_{i=1}^n C_{\rho}^{i,Xi}$$

$$\mathcal{R} = k \prod_{i=1}^{n_f} C_i^{w_i}$$

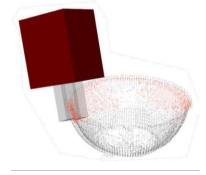


Grasping Pipeline:



1. Acquire scene cloud

2. Compute LoCoMo



3. Generate grasp hypotheses

4. Execute best grasp

How to combine Teleoperation and Autonomous grasping for a better Tele-manipulation?

Teleoperation

- Complete control of robot's movements
- Natural movements translated into robot movements
- Force\Visual feedback
- Hard to operate
- 3D Visual perception/understanding challenging

Autonomous Grasping

- Trajectory planner available
- Easy to operate
- Multiple grasp poses available
- Probabilistic
- High success rate but still not acceptable for high consequence applications

Some tasks requires human robot interaction

Manipulation by human hand-over

- Robot follows the human hand and collects the objects
- Multiple dynamic problems combined:
 - Continuous pose update
 - Real-time stable grasp pose update
 - Real-time motion planning to maintain reach-to-grasp
- Developed to use for problems in automotive industry



Online Grasp Planning

Dynamic grasp and trajectory planning for moving objects

- Grasp precomputed
- Object tracked

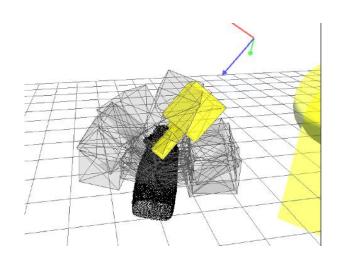
 $\epsilon_j = \frac{1}{m_j} \sum_{i=1}^{m_j} \epsilon_{ij}$

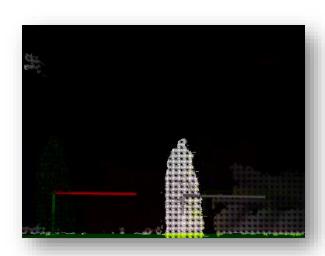
Grasps re-ranked online

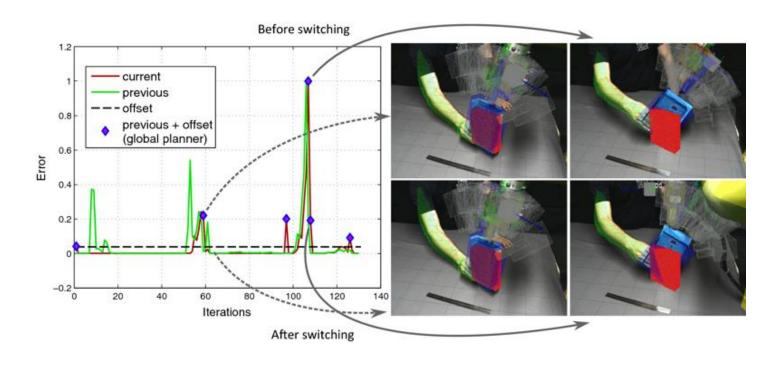
$$egin{aligned} \mathcal{K}^{for}: \mathbb{R}^{N^a} &\longrightarrow SE(3) ext{ from the approximate solution } ilde{c}^a, \ \epsilon_{ij} &= (1-a) \ \| ext{lin}(sv^w_{ij}) - ext{lin}(\mathcal{K}^{for}(ilde{c}^a_{ij})) \|^2 \ &+ a \ (1-| ext{ang}(sv^w_{ij}) \cdot (ext{ang}(\mathcal{K}^{for}(ilde{c}^a_{ij})))^{-1}|) \end{aligned}$$

HRI Previous Work

Extreme Robotics Laboratory



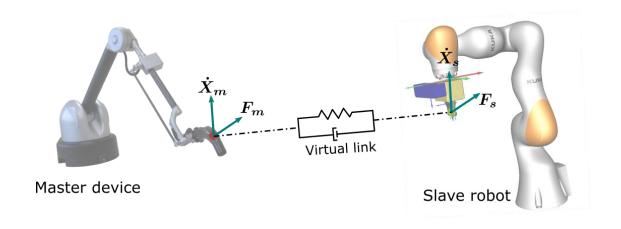


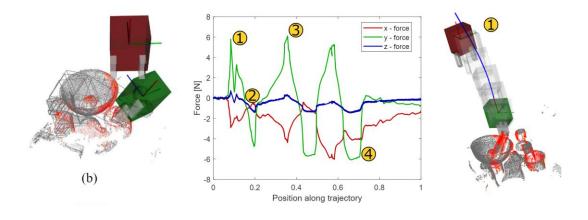


- Get initial pose of the object and generate initial grasp trajectories
- Track and update object pose when moved by human
- Compute feasible arm trajectories maintaining stable grasp tracking
 - Compute Inverse kinematics
- Select **k**th grasp trajectory with the smallest error and set as reference

Assisted Grasping with LoCoMo

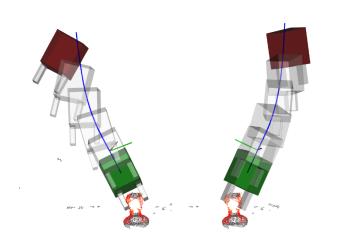
Extreme Robotics Laboratory





- Standard Teleoperation enhanced by grasp suggestions
- Force feedback includes shortest trajectory to grasp
- Grasp Reranking online based on state of the slave robot
- Combined with LoCoMo grasping to do assisted grasping
- Integrated shared control for automatic orientation alignment

$$\mathcal{R}_{j}^{'} = \frac{(d_{max} - d_{j})}{(d_{max} - d_{min}))} \mathcal{R}_{j}$$
 $\boldsymbol{F}_{m} = -\boldsymbol{F}_{s} = -K_{s}(\boldsymbol{X}_{m} - \boldsymbol{X}_{s}) - K_{d}(\dot{\boldsymbol{X}}_{m} - \dot{\boldsymbol{X}}_{s})$



Assisted Grasping with LoCoMo

Extreme Robotics
Laboratory

Test at ERL Laboratory:

- Kuka IIWA
- Haption Virtuose 6D
- Schunk PG70
- Ensenso N35
- Household objects

2-4X productivity increase Reduced cognitive load Usable by non expert users

Test at NNL Laboratory:

- Kuka KR180 R2900
- Haption Virtuose 6D
- Zimmer GEH8660
- Ensenso N35
- Nuclear Mockup objects



Chris



