Condition numbers in nonarchimedean semidefinite programming ... and what they say about stochastic mean payoff games

Xavier Allamigeon, Stéphane Gaubert, Ricardo Katz, Mateusz Skomra

INRIA and CMAP, École polytechnique, CNRS
January 24, 2019, Birmingham

```
Stephane.Gaubert@inria.fr
```

Based on : arXiv:1603.06916 and arXiv:1801.02089 (both in J. Symb. Comp.) and arXiv:1610.06746, with Allamigeon and Skomra, and on arXiv:1802.07712 (proc. MTNS) with Allamigeon, Katz and Skomra, and-Skomra's thesis.

Feasibility semidefinite programmming problem

Definition (spectrahedron)
Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)} \in \mathbb{R}^{m \times m}$, the associated spectrahedron is defined as
$\mathcal{S}=\left\{x \in \mathbb{R}^{n}: Q^{(0)}+x_{1} Q^{(1)}+\cdots+x_{n} Q^{(n)}\right.$ is positive semidefinite $\}$.

Feasibility semidefinite programmming problem

Definition (spectrahedron)
Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)} \in \mathbb{R}^{m \times m}$, the associated spectrahedron is defined as
$\mathcal{S}=\left\{x \in \mathbb{R}^{n}: Q^{(0)}+x_{1} Q^{(1)}+\cdots+x_{n} Q^{(n)}\right.$ is positive semidefinite $\}$.

- The semidefinite feasibility problem (SFDP) consists in deciding whether $\mathcal{S}=\varnothing$.

Feasibility semidefinite programmming problem

Definition (spectrahedron)
Given symmetric matrices $Q^{(0)}, \ldots, Q^{(n)} \in \mathbb{R}^{m \times m}$, the associated spectrahedron is defined as
$\mathcal{S}=\left\{x \in \mathbb{R}^{n}: Q^{(0)}+x_{1} Q^{(1)}+\cdots+x_{n} Q^{(n)}\right.$ is positive semidefinite $\}$.

- The semidefinite feasibility problem (SFDP) consists in deciding whether $\mathcal{S}=\varnothing$.
- The semidefinite programming problem (SDP) consists in minimizing a linear form over \mathcal{S}
- SDP can be solved in polynomial time by the ellipsoid or interior point methods in a restricted sense.
- SDP can be solved in polynomial time by the ellipsoid or interior point methods in a restricted sense.
- We obtain ε-approximate solutions. Complexity bounds:

$$
\operatorname{Poly}(n, m, \log \varepsilon, \log R, \log r, \ldots)
$$

where (R, r, \ldots) are metric estimates of the spectrahedron ($\log R$ can be exponential in n).

- SDP can be solved in polynomial time by the ellipsoid or interior point methods in a restricted sense.
- We obtain ε-approximate solutions. Complexity bounds:

$$
\operatorname{Poly}(n, m, \log \varepsilon, \log R, \log r, \ldots)
$$

where (R, r, \ldots) are metric estimates of the spectrahedron
($\log R$ can be exponential in n).

- \mathcal{S} may not contain any rational points.
- SDP can be solved in polynomial time by the ellipsoid or interior point methods in a restricted sense.
- We obtain ε-approximate solutions. Complexity bounds:

$$
\text { Poly }(n, m, \log \varepsilon, \log R, \log r, \ldots),
$$

where (R, r, \ldots) are metric estimates of the spectrahedron ($\log R$ can be exponential in n).

- \mathcal{S} may not contain any rational points.
- The SDP feasibility problem is not known to be in NP (let alone \mathbf{P}) in the Turing machine model.
- SDP can be solved in polynomial time by the ellipsoid or interior point methods in a restricted sense.
- We obtain ε-approximate solutions. Complexity bounds:

$$
\text { Poly }(n, m, \log \varepsilon, \log R, \log r, \ldots),
$$

where (R, r, \ldots) are metric estimates of the spectrahedron ($\log R$ can be exponential in n).

- \mathcal{S} may not contain any rational points.
- The SDP feasibility problem is not known to be in NP (let alone \mathbf{P}) in the Turing machine model.
- Exact answers to SDFP can be obtained by quantifier elimination or critical points methods.
- SDP can be solved in polynomial time by the ellipsoid or interior point methods in a restricted sense.
- We obtain ε-approximate solutions. Complexity bounds:

$$
\text { Poly }(n, m, \log \varepsilon, \log R, \log r, \ldots),
$$

where (R, r, \ldots) are metric estimates of the spectrahedron ($\log R$ can be exponential in n).

- \mathcal{S} may not contain any rational points.
- The SDP feasibility problem is not known to be in NP (let alone \mathbf{P}) in the Turing machine model.
- Exact answers to SDFP can be obtained by quantifier elimination or critical points methods.
- SDP can be solved in polynomial time by the ellipsoid or interior point methods in a restricted sense.
- We obtain ε-approximate solutions. Complexity bounds:

$$
\operatorname{Poly}(n, m, \log \varepsilon, \log R, \log r, \ldots),
$$

where (R, r, \ldots) are metric estimates of the spectrahedron ($\log R$ can be exponential in n).

- \mathcal{S} may not contain any rational points.
- The SDP feasibility problem is not known to be in NP (let alone \mathbf{P}) in the Turing machine model.
- Exact answers to SDFP can be obtained by quantifier elimination or critical points methods.
E. de Klerk and F. Vallentin. "On the Turing model complexity of interior point methods for semidefinite programming". In: SIAM J. Opt. 26.3 (2016), pp. 1944-1961
D. Henrion, S. Naldi, and M. Safey El Din. "Exact algorithms for linear matrix inequalities". In: SIAM J. Opt. 26.4 (2016), pp. 2512-2539

To better understand SDP over the reals. . .

To better understand SDP over the reals. . .

SDP over nonarchimedean fields

To better understand SDP over the reals. . .

SDP over nonarchimedean fields
equivalence between nonarchimedean SDP whose input has generic valuation and stochastic mean payoff games with perfect information (a problem in NP \cap coNP not known to be in P)

To better understand SDP over the reals. . .

SDP over nonarchimedean fields
equivalence between nonarchimedean SDP whose input has generic valuation and stochastic mean payoff games with perfect information (a problem in NP \cap coNP not known to be in P)
nonarchimedean condition number

To better understand SDP over the reals. . .

SDP over nonarchimedean fields
equivalence between nonarchimedean SDP whose input has generic valuation and stochastic mean payoff games with perfect information (a problem in NP \cap coNP not known to be in P)
nonarchimedean condition number
use some metric geometry ideas

Generalized Puiseux series

- A (formal generalized) Puiseux series is a series of form

$$
\boldsymbol{x}=\boldsymbol{x}(t)=\sum_{i=1}^{\infty} c_{i} t^{\alpha_{i}},
$$

where the sequence $\left(\alpha_{i}\right)_{i} \subset \mathbb{R}$ is strictly decreasing and either finite or unbounded and c_{i} are real. Includes (generalized)
Dirichlet series $\alpha_{i}=-\log i, t=\exp (s)$. Hardy, Riesz 1915
L. van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: Transactions of the AMS 350.11 (1998),
pp. 4377-4421.

Generalized Puiseux series

- A (formal generalized) Puiseux series is a series of form

$$
\boldsymbol{x}=\boldsymbol{x}(t)=\sum_{i=1}^{\infty} c_{i} t^{\alpha_{i}},
$$

where the sequence $\left(\alpha_{i}\right)_{i} \subset \mathbb{R}$ is strictly decreasing and either finite or unbounded and c_{i} are real. Includes (generalized)
Dirichlet series $\alpha_{i}=-\log i, t=\exp (s)$. Hardy, Riesz 1915

- The subset of absolutely converging (for t large enough) Puiseux series forms a real closed field, denoted here by \mathbb{K}.
L. van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: Transactions of the AMS 350.11 (1998),
pp. 4377-4421.

Generalized Puiseux series

- A (formal generalized) Puiseux series is a series of form

$$
\boldsymbol{x}=\boldsymbol{x}(t)=\sum_{i=1}^{\infty} c_{i} t^{\alpha_{i}},
$$

where the sequence $\left(\alpha_{i}\right)_{i} \subset \mathbb{R}$ is strictly decreasing and either finite or unbounded and c_{i} are real. Includes (generalized)
Dirichlet series $\alpha_{i}=-\log i, t=\exp (s)$. Hardy, Riesz 1915

- The subset of absolutely converging (for t large enough) Puiseux series forms a real closed field, denoted here by \mathbb{K}.
- We say that $\boldsymbol{x} \geqslant \boldsymbol{y}$ if $\boldsymbol{x}(t) \geqslant \boldsymbol{y}(t)$ for all t large enough. This is a linear order on \mathbb{K}.
L. van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: Transactions of the AMS 350.11 (1998),
pp. 4377-4421.

Definition (SDFP over Puiseux series)
Given symmetric matrices $\boldsymbol{Q}^{(0)}, \boldsymbol{Q}^{(1)}, \ldots, \boldsymbol{Q}^{(n)}$, denote

$$
Q(x)=Q^{(0)}+x_{1} Q^{(1)}+\cdots+x_{n} Q^{(n)} .
$$

Decide if the following spectrahedron is empty

$$
\mathcal{S}=\left\{\boldsymbol{x} \in \mathbb{K}_{\geq 0}^{n}: \boldsymbol{Q}(\boldsymbol{x}) \text { is positive semidefinite }\right\}
$$

Definition (SDFP over Puiseux series)
Given symmetric matrices $\boldsymbol{Q}^{(0)}, \boldsymbol{Q}^{(1)}, \ldots, \boldsymbol{Q}^{(n)}$, denote

$$
Q(x)=Q^{(0)}+x_{1} Q^{(1)}+\cdots+x_{n} Q^{(n)} .
$$

Decide if the following spectrahedron is empty

$$
\mathcal{S}=\left\{\boldsymbol{x} \in \mathbb{K}_{\geq 0}^{n}: \boldsymbol{Q}(x) \text { is positive semidefinite }\right\}
$$

Proposition

$\mathcal{S} \neq \varnothing$ iff for all t large enough, the following real spectrahedron is non-empty
$\mathcal{S}(t)=\left\{x \in \mathbb{R}_{\geqslant 00}^{n}: Q^{(0)}(t)+x_{1} Q^{(1)}(t)+\cdots+x_{n} Q^{(n)}(t)\right.$ is pos. semidef. $\}$
Proof. \mathbb{K} is the field of germs of univariate functions definable in a o-minimal structure.

Theorem (Allamigeon, SG, Skomra)
There is a correspondence between nonarchimedean semidefinite programming problems and zero-sum stochastic games with perfect information. If the valuations of the matrices $\boldsymbol{Q}^{(i)}$ are generic, feasibility holds iff Player Max wins the game.
X. Allamigeon, S. Gaubert, and M. Skomra. "Solving Generic Nonarchimedean Semidefinite Programs Using Stochastic Game Algorithms". In: Journal of Symbolic Computation 85 (2018), pp. 25-54. Doi: 10.1016/j.jsc.2017.07.002. eprint: 1603.06916.

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max

Take the spectrahedral cone

$$
\boldsymbol{Q}(\boldsymbol{x}):=\left[\begin{array}{ccc}
t \boldsymbol{x}_{3} & -\boldsymbol{x}_{1} & -t^{3 / 4} \boldsymbol{x}_{3} \\
-\boldsymbol{x}_{1} & t^{-1} \boldsymbol{x}_{1}+t^{-5 / 4} \boldsymbol{x}_{3}-\boldsymbol{x}_{2} & -\boldsymbol{x}_{3} \\
-t^{3 / 4} \boldsymbol{x}_{3} & -\boldsymbol{x}_{3} & t^{9 / 4} \boldsymbol{x}_{2}
\end{array}\right] \succcurlyeq 0
$$

- We associate with $\boldsymbol{Q}(\boldsymbol{x})$ a stochastic game with perfect information.
- Circles: Min plays, Square: Max plays, Bullet: Nature flips coin, Payments made by Min to Max
- Max is winning implies that the cone is nontrivial, and yields a feasible point
 $\left(t^{1.06}, t^{0.02}, t^{1.13}\right)$

Benchmark

We tested our method on randomly chosen matrices $Q^{(1)}, \ldots, Q^{(n)} \in \mathbb{K}^{m \times m}$ with positive entries on diagonals and no zero entries. We used the value iteration algorithm.

(n, m)	$(50,10)$	$(50,40)$	$(50,50)$	$(50,100)$	$(50,1000)$
time	0.000065	0.000049	0.000077	0.000279	0.026802
(n, m)	$(100,10)$	$(100,15)$	$(100,80)$	$(100,100)$	$(100,1000)$
time	0.000025	0.000270	0.000366	0.000656	0.053944
(n, m)	$(1000,10)$	$(1000,50)$	$(1000,100)$	$(1000,200)$	$(1000,500)$
time	0.000233	0.073544	0.015305	0.027762	0.148714
(n, m)	$(2000,10)$	$(2000,70)$	$(2000,100)$	$(10000,150)$	$(10000,400)$
time	0.000487	1.852221	0.087536	19.919844	2.309174

Table: Execution time (in sec.) of Procedure CheckFeasibility on random instances.

Experimental phase transition for random nonarchimedean SDP

$n=\#$ variables, $m=$ size matrices

The present work on tropical condition numbers grew to explain this picture.

Valuation of Puiseux series

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{x}(t)=\sum_{k=1}^{\infty} c_{k} t^{\alpha_{k}} \\
\operatorname{val}(\boldsymbol{x})=\lim _{t \rightarrow \infty} \frac{\log |\boldsymbol{x}(t)|}{\log t}=\alpha_{1} \quad(\text { and } \operatorname{val}(0)=-\infty) .
\end{gathered}
$$

Valuation of Puiseux series

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{x}(t)=\sum_{k=1}^{\infty} c_{k} t^{\alpha_{k}} \\
\operatorname{val}(\boldsymbol{x})=\lim _{t \rightarrow \infty} \frac{\log |\boldsymbol{x}(t)|}{\log t}=\alpha_{1} \quad(\text { and } \operatorname{val}(0)=-\infty) .
\end{gathered}
$$

Lemma

Suppose that $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{K}_{\geqslant 0}^{n}$. Then

- $\boldsymbol{x} \geqslant \boldsymbol{y} \Longrightarrow \operatorname{val}(\boldsymbol{x}) \geqslant \operatorname{val}(\boldsymbol{y})$
- $\operatorname{val}(\boldsymbol{x}+\boldsymbol{y})=\max (\operatorname{val}(\boldsymbol{x}), \operatorname{val}(\boldsymbol{y}))$
- $\operatorname{val}(\boldsymbol{x y})=\operatorname{val}(\boldsymbol{x})+\operatorname{val}(\boldsymbol{y})$.

Valuation of Puiseux series

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{x}(t)=\sum_{k=1}^{\infty} c_{k} t^{\alpha_{k}} \\
\operatorname{val}(\boldsymbol{x})=\lim _{t \rightarrow \infty} \frac{\log |\boldsymbol{x}(t)|}{\log t}=\alpha_{1} \quad(\text { and } \operatorname{val}(0)=-\infty) .
\end{gathered}
$$

Lemma

Suppose that $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{K}_{\geqslant 0}^{n}$. Then

- $\boldsymbol{x} \geqslant \boldsymbol{y} \Longrightarrow \operatorname{val}(\boldsymbol{x}) \geqslant \operatorname{val}(\boldsymbol{y})$
- $\operatorname{val}(\boldsymbol{x}+\boldsymbol{y})=\max (\operatorname{val}(\boldsymbol{x}), \operatorname{val}(\boldsymbol{y}))$
- $\operatorname{val}(\boldsymbol{x y})=\operatorname{val}(\boldsymbol{x})+\operatorname{val}(\boldsymbol{y})$.

Thus, val is a morphism from $\mathbb{K}_{\geqslant 0}$ to a semifield of characteristic one, the tropical semifield $\mathbb{T}:=(\mathbb{R} \cup\{-\infty\}$, max,$\notin)$.

Tropical spectrahedra

Definition
Suppose that \mathcal{S} is a spectrahedron in $\mathbb{K}_{\geqslant 0}^{n}$. Then we say that $\operatorname{val}(\mathcal{S})$ is a tropical spectrahedron.

How can we study these creatures?

A $\mathcal{S} \subset \mathbb{K}^{n}$ is basic semialgebraic if

$$
\mathcal{S}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}: P_{i}\left(x_{1}, \ldots, x_{n}\right) \diamond 0, \diamond \in\{>,=\}, \forall i \in[q]\right\}
$$

where $P_{1}, \ldots, P_{q} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. A semialgebraic set is a finite union of basic semialgebraic sets.

A $\mathcal{S} \subset \mathbb{K}^{n}$ is basic semialgebraic if

$$
\mathcal{S}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}: P_{i}\left(x_{1}, \ldots, x_{n}\right) \diamond 0, \diamond \in\{>,=\}, \forall i \in[q]\right\}
$$

where $P_{1}, \ldots, P_{q} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. A semialgebraic set is a finite union of basic semialgebraic sets.
A set $S \subset \mathbb{R}^{n}$ is basic semilinear if it is of the form

$$
S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \ell_{i}\left(x_{1}, \ldots, x_{n}\right) \diamond h^{(i)}, \diamond \in\{>,=\}, \forall i \in[q]\right\}
$$

where $\ell_{1}, \ldots, \ell_{q}$ are linear forms with integer coefficients, $h^{(1)}, \ldots, h^{(q)} \in \mathbb{R}$. A semilinear set is a finite union of basic semilinear sets.

A $\mathcal{S} \subset \mathbb{K}^{n}$ is basic semialgebraic if

$$
\mathcal{S}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}: P_{i}\left(x_{1}, \ldots, x_{n}\right) \diamond 0, \diamond \in\{>,=\}, \forall i \in[q]\right\}
$$

where $P_{1}, \ldots, P_{q} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. A semialgebraic set is a finite union of basic semialgebraic sets.
A set $S \subset \mathbb{R}^{n}$ is basic semilinear if it is of the form

$$
S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \ell_{i}\left(x_{1}, \ldots, x_{n}\right) \diamond h^{(i)}, \diamond \in\{>,=\}, \forall i \in[q]\right\}
$$

where $\ell_{1}, \ldots, \ell_{q}$ are linear forms with integer coefficients, $h^{(1)}, \ldots, h^{(q)} \in \mathbb{R}$. A semilinear set is a finite union of basic semilinear sets.
Theorem (Alessandrini, Adv. in Geom. 2013)
If $\mathcal{S} \subset \mathbb{K}_{>0}^{n}$ is semi-algebraic, then $\operatorname{val}(\mathcal{S}) \subset \mathbb{R}^{n}$ is semilinear and it is closed.

A $\mathcal{S} \subset \mathbb{K}^{n}$ is basic semialgebraic if

$$
\mathcal{S}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}: P_{i}\left(x_{1}, \ldots, x_{n}\right) \diamond 0, \diamond \in\{>,=\}, \forall i \in[q]\right\}
$$

where $P_{1}, \ldots, P_{q} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. A semialgebraic set is a finite union of basic semialgebraic sets.
A set $S \subset \mathbb{R}^{n}$ is basic semilinear if it is of the form

$$
S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \ell_{i}\left(x_{1}, \ldots, x_{n}\right) \diamond h^{(i)}, \diamond \in\{>,=\}, \forall i \in[q]\right\}
$$

where $\ell_{1}, \ldots, \ell_{q}$ are linear forms with integer coefficients, $h^{(1)}, \ldots, h^{(q)} \in \mathbb{R}$. A semilinear set is a finite union of basic semilinear sets.
Theorem (Alessandrini, Adv. in Geom. 2013)
If $\mathcal{S} \subset \mathbb{K}_{>0}^{n}$ is semi-algebraic, then $\operatorname{val}(\mathcal{S}) \subset \mathbb{R}^{n}$ is semilinear and it is closed.

Constructive version in Allamigeon, SG, Skomra arXiv:1610.06746 using Denef-Pas quantifier elimination in valued fields.
$\mathcal{S}:=\operatorname{val}(\mathcal{S})$ is tropically convex

$$
\max (\alpha, \beta)=0, u, v \in \mathcal{S} \Longrightarrow \sup (\alpha e+u, \beta e+v) \in \mathcal{S},
$$

where $e=(1, \ldots, 1)^{\top}$.
$\mathcal{S}:=\operatorname{val}(\mathcal{S})$ is tropically convex

$$
\max (\alpha, \beta)=0, u, v \in \mathcal{S} \Longrightarrow \sup (\alpha e+u, \beta e+v) \in \mathcal{S},
$$

where $e=(1, \ldots, 1)^{\top}$.

Figure: Tropical spectrahedron.

Theorem (Semi-algebraic version of Kapranov theorem, Allamigeon, SG, Skomra arXiv:1610.06746)
Consider a collection of m regions delimited by hypersurfaces:

$$
\mathcal{S}_{i}:=\left\{x \in \mathbb{K}_{\geqslant 0}^{n} \mid P_{i}^{-}(x) \leqslant P_{i}^{+}(x)\right\}, \quad i \in[m]
$$

where $P_{i}^{ \pm}=\sum_{\alpha} p_{i, \alpha}^{ \pm} x^{\alpha} \in \mathbb{K}_{\geqslant 0}[x]$, and let

$$
S_{i}:=\left\{x \in \mathbb{R}^{n} \mid \max _{\alpha}\left(\text { val } p_{i, \alpha}^{-}+\langle\alpha, x\rangle\right) \leqslant \max _{\alpha}\left(\text { val } p_{i, \alpha}^{+}+\langle\alpha, x\rangle\right)\right\}
$$

Then

$$
\operatorname{val}\left(\bigcap_{i \in[m]} \mathcal{S}_{i}\right) \subset \bigcap_{i \in[m]} \operatorname{val}\left(\mathcal{S}_{i}\right) \subset \bigcap_{i \in[m]} S_{i}
$$

and the equality holds if $\bigcap_{i \in[m]} S_{i}$ is the closure of its interior; in particular if the valuations val $p_{i, \alpha}^{ \pm}$are generic.

Example 1.

$$
\begin{gathered}
\mathcal{S}=\left\{x \in \mathbb{K}_{>0}^{3} \mid x_{1}^{2} \leqslant t x_{2}+t^{4} x_{2} x_{3}\right\} \\
\operatorname{val} \mathcal{S}=\left\{x \in \mathbb{R}^{3} \mid 2 x_{1} \leqslant \max \left(1+x_{2}, 4+x_{2}+x_{3}\right)\right\}
\end{gathered}
$$

Example 2.

Figure: This set is the closure of its interior.

The correspondence between stochastic mean payoff games and nonarchimedean spectrahedra explained

Stochastic mean payoff games

Two player, Min and Max, and a half-player, Nature, move a token on a digraph, alternating moves in a cyclic way:

Stochastic mean payoff games

Two player, Min and Max, and a half-player, Nature, move a token on a digraph, alternating moves in a cyclic way:

- If the current state i belongs to Player Min, this player chooses and arc $i \rightarrow j$, and receives $A_{j i}$ from Player Max.

Stochastic mean payoff games

Two player, Min and Max, and a half-player, Nature, move a token on a digraph, alternating moves in a cyclic way:

- If the current state i belongs to Player Min, this player chooses and arc $i \rightarrow j$, and receives $A_{j i}$ from Player Max.
- The current state j now belongs to the half-player Nature, Nature throws a dice and next state becomes r with probability $P_{j r}$.

Stochastic mean payoff games

Two player, Min and Max, and a half-player, Nature, move a token on a digraph, alternating moves in a cyclic way:

- If the current state i belongs to Player Min, this player chooses and arc $i \rightarrow j$, and receives $A_{j i}$ from Player Max.
- The current state j now belongs to the half-player Nature, Nature throws a dice and next state becomes r with probability $P_{j r}$.
- The current state r now belongs Player Max, this player chosses an arc $r \rightarrow s$, and receives $B_{r s}$ from Player Max.

Stochastic mean payoff games

Two player, Min and Max, and a half-player, Nature, move a token on a digraph, alternating moves in a cyclic way:

- If the current state i belongs to Player Min, this player chooses and arc $i \rightarrow j$, and receives $A_{j i}$ from Player Max.
- The current state j now belongs to the half-player Nature, Nature throws a dice and next state becomes r with probability $P_{j r}$.
- The current state r now belongs Player Max, this player chosses an arc $r \rightarrow s$, and receives $B_{r s}$ from Player Max.
- the current state s now belongs to Player Min, and so on.

If Min/Max play k turns according to strategies σ, τ, the payment of the game starting from state $i \in[n]:=\{$ Min states $\}$ is denoted by $R_{i}^{k}(\sigma, \tau)$.

If Min/Max play k turns according to strategies σ, τ, the payment of the game starting from state $i \in[n]:=\{$ Min states $\}$ is denoted by $R_{i}^{k}(\sigma, \tau)$.
v_{i}^{k} is the value of the game in horizon k, starting from state i, and σ^{*}, τ^{*} are optimal strategies if

$$
\mathbb{E} R_{i}^{k}\left(\sigma^{*}, \tau\right) \leqslant v_{i}^{k}=\mathbb{E} R_{i}^{k}\left(\sigma^{*}, \tau^{*}\right) \leqslant \mathbb{E} R_{i}^{k}\left(\sigma, \tau^{*}\right), \quad \forall \sigma, \tau
$$

If Min/Max play k turns according to strategies σ, τ, the payment of the game starting from state $i \in[n]:=\{$ Min states $\}$ is denoted by $R_{i}^{k}(\sigma, \tau)$.
v_{i}^{k} is the value of the game in horizon k, starting from state i, and σ^{*}, τ^{*} are optimal strategies if

$$
\mathbb{E} R_{i}^{k}\left(\sigma^{*}, \tau\right) \leqslant v_{i}^{k}=\mathbb{E} R_{i}^{k}\left(\sigma^{*}, \tau^{*}\right) \leqslant \mathbb{E} R_{i}^{k}\left(\sigma, \tau^{*}\right), \quad \forall \sigma, \tau
$$

Theorem (Shapley)

$$
v_{i}^{k}=\min _{j \in \text { Nature states }}\left(-A_{j i}+\sum_{r \in \text { Max states }} P_{j r} \max _{s \in \text { Min states }}\left(B_{r s}+v_{s}^{k-1}\right)\right), v^{0} \equiv 0
$$

$$
v^{k}=F\left(v^{k-1}\right), \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad \text { Shapley operator }
$$

If Min/Max play k turns according to strategies σ, τ, the payment of the game starting from state $i \in[n]:=\{$ Min states $\}$ is denoted by $R_{i}^{k}(\sigma, \tau)$.
v_{i}^{k} is the value of the game in horizon k, starting from state i, and σ^{*}, τ^{*} are optimal strategies if

$$
\mathbb{E} R_{i}^{k}\left(\sigma^{*}, \tau\right) \leqslant v_{i}^{k}=\mathbb{E} R_{i}^{k}\left(\sigma^{*}, \tau^{*}\right) \leqslant \mathbb{E} R_{i}^{k}\left(\sigma, \tau^{*}\right), \quad \forall \sigma, \tau
$$

Theorem (Shapley)
$v_{i}^{k}=\min _{j \in \text { Nature states }}\left(-A_{j i}+\sum_{r \in \text { Max states }} P_{j r} \max _{s \in \text { Min states }}\left(B_{r s}+v_{s}^{k-1}\right)\right), v^{0} \equiv 0$

$$
v^{k}=F\left(v^{k-1}\right), \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad \text { Shapley operator }
$$

$$
F(x)=\left(-A^{\top}\right) \odot_{\text {min },+}\left(P \times\left(B \odot_{\max ,+} x\right)\right)=A^{\sharp} \circ P \circ B(x)
$$

The mean payoff vector

$$
\bar{v}:=\lim _{k \rightarrow \infty} v^{k} / k=\lim _{k \rightarrow \infty} F^{k}(0) / k \in \mathbb{R}^{n}
$$

does exist and it is achieved by positional stationnary strategies (coro of Kohlberg 1980).

The mean payoff vector

$$
\bar{v}:=\lim _{k \rightarrow \infty} v^{k} / k=\lim _{k \rightarrow \infty} F^{k}(0) / k \in \mathbb{R}^{n}
$$

does exist and it is achieved by positional stationnary strategies (coro of Kohlberg 1980).

Mean payoff games: compute the mean payoff vector

The mean payoff vector

$$
\bar{v}:=\lim _{k \rightarrow \infty} v^{k} / k=\lim _{k \rightarrow \infty} F^{k}(0) / k \in \mathbb{R}^{n}
$$

does exist and it is achieved by positional stationnary strategies (coro of Kohlberg 1980).

Mean payoff games: compute the mean payoff vector
We say that the mean payoff game with initial state i is (weakly) winning for Max if $\lim _{k} v_{i}^{k} / k \geqslant 0$.

Gurvich, Karzanov and Khachyan asked in 1988 whether the determinisitic version is in P. Still open. Their argument implies membership in NP \cap coNP, see also Zwick, Paterson. Same is true in the stochastic case (Condon).

Collatz-Wielandt property / winning certificates

$\mathbb{T}:=\mathbb{R} \cup\{-\infty\}$,
Theorem (Akian, SG, Guterman IJAC 2912, coro of Nussbaum)

$$
\begin{gathered}
\max _{i \in n} \bar{v}_{i}=\overline{\mathrm{cw}}(R) \\
\overline{\mathrm{cw}}(F):=\max \left\{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{T}^{n}, x \not \equiv-\infty: \lambda e+x \leqslant F(x)\right\}
\end{gathered}
$$

Corollary
Player Max has at least one winning state (i.e., $0 \leqslant \max _{i} \bar{v}_{i}$) iff

$$
\exists x \in \mathbb{T}^{n}, x \not \equiv-\infty, \quad x \leqslant F(x)
$$

Definition

A square matrix is called a Metzler matrix if its off-diagonal entries are nonpositive.

Definition

A square matrix is called a Metzler matrix if its off-diagonal entries are nonpositive.

We suppose $\boldsymbol{Q}^{(1)}, \ldots, \boldsymbol{Q}^{(n)} \in \mathbb{K}^{m \times m}$ are Metzler - the general case will reduce to this one.

Definition

A square matrix is called a Metzler matrix if its off-diagonal entries are nonpositive.

We suppose $\boldsymbol{Q}^{(1)}, \ldots, \boldsymbol{Q}^{(n)} \in \mathbb{K}^{m \times m}$ are Metzler - the general case will reduce to this one.

Want to decide whether

$$
\boldsymbol{Q}(\boldsymbol{x})=\boldsymbol{x}_{1} \boldsymbol{Q}^{(1)}+\cdots+\boldsymbol{x}_{n} \boldsymbol{Q}^{(n)} \succcurlyeq 0
$$

for some $\boldsymbol{x} \in \mathbb{K}_{\geqslant 0}^{n}, \boldsymbol{x} \neq 0$.

If $\boldsymbol{Q} \succcurlyeq 0$ is a $m \times m$ symmetric matrix, then, the 1×1 and 2×2 principal minors of \boldsymbol{Q} are nonnegative: $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant \boldsymbol{Q}_{i j}^{2}$.

If $\boldsymbol{Q} \succcurlyeq 0$ is a $m \times m$ symmetric matrix, then, the 1×1 and 2×2 principal minors of Q are nonnegative: $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant \boldsymbol{Q}_{i j}^{2}$.
Is there a "converse"?

If $Q \succcurlyeq 0$ is a $m \times m$ symmetric matrix, then, the 1×1 and 2×2 principal minors of \boldsymbol{Q} are nonnegative: $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant \boldsymbol{Q}_{i j}^{2}$.

Is there a "converse"?

Lemma
Assume that $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant(m-1)^{2} \boldsymbol{Q}_{i j}^{2}$. Then $\boldsymbol{Q} \succcurlyeq 0$.

If $\boldsymbol{Q} \succcurlyeq 0$ is a $m \times m$ symmetric matrix, then, the 1×1 and 2×2 principal minors of \boldsymbol{Q} are nonnegative: $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant \boldsymbol{Q}_{i j}^{2}$.
Is there a "converse"?
Lemma
Assume that $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant(m-1)^{2} \boldsymbol{Q}_{i j}^{2}$. Then $\boldsymbol{Q} \succcurlyeq 0$.

Proof.
Can assume that $\boldsymbol{Q}_{i i} \equiv 1$ (consider $\left.\operatorname{diag}(\boldsymbol{Q})^{-1 / 2} \boldsymbol{Q} \operatorname{diag}(\boldsymbol{Q})^{-1 / 2}\right)$. Then, $\left|\boldsymbol{Q}_{i j}\right| \leqslant 1 /(m-1)$, and so $\boldsymbol{Q}_{i i} \geqslant \sum_{j \neq i}\left|\boldsymbol{Q}_{i j}\right|$ implies $Q \succcurlyeq 0$.

If $\boldsymbol{Q} \succcurlyeq 0$ is a $m \times m$ symmetric matrix, then, the 1×1 and 2×2 principal minors of Q are nonnegative: $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant \boldsymbol{Q}_{i j}^{2}$.
Is there a "converse"?
Lemma
Assume that $\boldsymbol{Q}_{i i} \geqslant 0, \boldsymbol{Q}_{i i} \boldsymbol{Q}_{j j} \geqslant(m-1)^{2} \boldsymbol{Q}_{i j}^{2}$. Then $\boldsymbol{Q} \succcurlyeq 0$.

Proof.
Can assume that $\boldsymbol{Q}_{i i} \equiv 1$ (consider $\left.\operatorname{diag}(\boldsymbol{Q})^{-1 / 2} \boldsymbol{Q} \operatorname{diag}(\boldsymbol{Q})^{-1 / 2}\right)$. Then, $\left|\boldsymbol{Q}_{i j}\right| \leqslant 1 /(m-1)$, and so $\boldsymbol{Q}_{i i} \geqslant \sum_{j \neq i}\left|\boldsymbol{Q}_{i j}\right|$ implies $\boldsymbol{Q} \succcurlyeq 0$.

Archimedean modification of Yu's theorem, that the image by the nonarchimedean valuation of the SDP cone is given by 1×1 and 2×2 minor conditions.

Let $\mathcal{S}:=\left\{\boldsymbol{x} \in \mathbb{K}_{\geqslant 0}^{n}: \boldsymbol{Q}(\boldsymbol{x}) \succcurlyeq 0\right\}$

Let $\mathcal{S}:=\left\{\boldsymbol{x} \in \mathbb{K}_{\underset{\geqslant}{n}}^{n}: \boldsymbol{Q}(\boldsymbol{x}) \succcurlyeq 0\right\}$
Let $\mathcal{S}^{\text {out }}$ be defined by the 1×1 and 2×2 principal minor conditions

$$
Q_{i i}(x) \geqslant 0, \quad Q_{i i}(x) Q_{j j}(x) \geqslant\left(Q_{i j}(x)\right)^{2}
$$

Let $\mathcal{S}:=\left\{\boldsymbol{x} \in \mathbb{K}_{\underset{\geqslant}{n}}^{n}: \boldsymbol{Q}(\boldsymbol{x}) \succcurlyeq 0\right\}$
Let $\mathcal{S}^{\text {out }}$ be defined by the 1×1 and 2×2 principal minor conditions

$$
Q_{i i}(x) \geqslant 0, \quad Q_{i i}(x) Q_{j j}(x) \geqslant\left(Q_{i j}(x)\right)^{2}
$$

Let $\mathcal{S}^{\text {in }}$ be defined by the reinforced minor conditions

$$
Q_{i i}(x) \geqslant 0, \quad Q_{i i}(x) Q_{j j}(x) \geqslant(m-1)^{2}\left(Q_{i j}(x)\right)^{2}
$$

Let $\mathcal{S}:=\left\{\boldsymbol{x} \in \mathbb{K}_{\geqslant 0}^{n}: \boldsymbol{Q}(\boldsymbol{x}) \succcurlyeq 0\right\}$
Let $\mathcal{S}^{\text {out }}$ be defined by the 1×1 and 2×2 principal minor conditions

$$
\boldsymbol{Q}_{i i}(\boldsymbol{x}) \geqslant 0, \quad \boldsymbol{Q}_{i i}(\boldsymbol{x}) \boldsymbol{Q}_{i j}(\boldsymbol{x}) \geqslant\left(\boldsymbol{Q}_{i j}(\boldsymbol{x})\right)^{2}
$$

Let $\mathcal{S}^{\text {in }}$ be defined by the reinforced minor conditions

$$
\boldsymbol{Q}_{i i}(\boldsymbol{x}) \geqslant 0, \quad \boldsymbol{Q}_{i i}(\boldsymbol{x}) \boldsymbol{Q}_{j j}(\boldsymbol{x}) \geqslant(m-1)^{2}\left(\boldsymbol{Q}_{i j}(\boldsymbol{x})\right)^{2}
$$

Theorem (Allamigeon, SG, Skomra)

$$
\mathcal{S}^{i n} \subseteq \mathcal{S} \subseteq \mathcal{S}^{\text {out }}
$$

and if \boldsymbol{Q} is tropically generic (valuations of coeffs are generic),

$$
\operatorname{val}\left(\mathcal{S}^{\text {in }}\right)=\operatorname{val}(\mathcal{S})=\operatorname{val}\left(\mathcal{S}^{\text {out }}\right)
$$

Let $\mathcal{S}:=\left\{\boldsymbol{x} \in \mathbb{K}_{\underset{\geqslant}{n}}^{n}: \boldsymbol{Q}(\boldsymbol{x}) \succcurlyeq 0\right\}$
Let $\mathcal{S}^{\text {out }}$ be defined by the 1×1 and 2×2 principal minor conditions

$$
Q_{i i}(x) \geqslant 0, \quad Q_{i i}(x) Q_{j j}(x) \geqslant\left(Q_{i j}(x)\right)^{2}
$$

Let $\mathcal{S}^{\text {in }}$ be defined by the reinforced minor conditions

$$
Q_{i i}(x) \geqslant 0, \quad Q_{i i}(x) Q_{j j}(x) \geqslant(m-1)^{2}\left(Q_{i j}(x)\right)^{2}
$$

Theorem (Allamigeon, SG, Skomra)

$$
\mathcal{S}^{\text {in }} \subseteq \mathcal{S} \subseteq \mathcal{S}^{\text {out }}
$$

and if Q is tropically generic (valuations of coeffs are generic),

$$
\operatorname{val}\left(\mathcal{S}^{\text {in }}\right)=\operatorname{val}(\mathcal{S})=\operatorname{val}\left(\mathcal{S}^{\text {out }}\right) .
$$

We show that if $\boldsymbol{X}=\cap_{k}\left\{\boldsymbol{x} \mid \boldsymbol{P}_{k}(\boldsymbol{x}) \leqslant 0\right\}$, then $\operatorname{val} \boldsymbol{X}=\cap_{k} \operatorname{val}\left\{\boldsymbol{x} \mid \boldsymbol{P}_{k}(\boldsymbol{x}) \leqslant 0\right\}$ if the polynomials \boldsymbol{P}_{k} are tropically generic

Let $\mathcal{S}:=\left\{\boldsymbol{x} \in \mathbb{K}_{\geq 00}^{n}: Q(x) \succcurlyeq 0\right\}$
Let $\mathcal{S}^{\text {out }}$ be defined by the 1×1 and 2×2 principal minor conditions

$$
Q_{i i}(x) \geqslant 0, \quad Q_{i i}(x) Q_{j j}(x) \geqslant\left(Q_{i j}(x)\right)^{2}
$$

Let $\mathcal{S}^{\text {in }}$ be defined by the reinforced minor conditions

$$
Q_{i i}(x) \geqslant 0, \quad Q_{i i}(x) Q_{j j}(x) \geqslant(m-1)^{2}\left(Q_{i j}(x)\right)^{2}
$$

Theorem (Allamigeon, SG, Skomra)

$$
\mathcal{S}^{\text {in }} \subseteq \mathcal{S} \subseteq \mathcal{S}^{\text {out }}
$$

and if \boldsymbol{Q} is tropically generic (valuations of coeffs are generic),

$$
\operatorname{val}\left(\mathcal{S}^{\text {in }}\right)=\operatorname{val}(\mathcal{S})=\operatorname{val}\left(\mathcal{S}^{\text {out }}\right) .
$$

We show that if $\boldsymbol{X}=\cap_{k}\left\{\boldsymbol{x} \mid \boldsymbol{P}_{k}(\boldsymbol{x}) \leqslant 0\right\}$, then val $\boldsymbol{X}=\cap_{k} \operatorname{val}\left\{\boldsymbol{x} \mid \boldsymbol{P}_{k}(\boldsymbol{x}) \leqslant 0\right\}$ if the polynomials \boldsymbol{P}_{k} are tropically generic (apply semi-algebraic version of Kapranov theorem)

Can we describe combinatorially val \mathcal{S} ?

Suppose $Q_{i i}(x) \geqslant 0$, write $Q_{i i}=Q_{i i}^{+}-Q_{i i}^{-}$.

Suppose $\boldsymbol{Q}_{i i}(\boldsymbol{x}) \geqslant 0$, write $\boldsymbol{Q}_{i i}=\boldsymbol{Q}_{i i}^{+}-\boldsymbol{Q}_{i i}^{-}$.
Then

$$
\operatorname{val} Q_{i j}^{+}(x) \geqslant \operatorname{val} Q_{i i}^{-}(x)
$$

Suppose $\boldsymbol{Q}_{i i}(\boldsymbol{x}) \geqslant 0$, write $\boldsymbol{Q}_{i i}=\boldsymbol{Q}_{i i}^{+}-\boldsymbol{Q}_{i i}^{-}$.
Then

$$
\operatorname{val} Q_{i j}^{+}(x) \geqslant \operatorname{val} Q_{i i}^{-}(x)
$$

Moreover, if

$$
Q_{i i}(x) Q_{j j}(x) \geqslant\left(Q_{i j}(x)\right)^{2}
$$

Suppose $\boldsymbol{Q}_{i i}(\boldsymbol{x}) \geqslant 0$, write $\boldsymbol{Q}_{i i}=\boldsymbol{Q}_{i i}^{+}-\boldsymbol{Q}_{i i}^{-}$.
Then

$$
\operatorname{val} Q_{i j}^{+}(x) \geqslant \operatorname{val} Q_{i i}^{-}(x)
$$

Moreover, if

$$
Q_{i i}(x) Q_{j j}(x) \geqslant\left(Q_{i j}(x)\right)^{2}
$$

then

$$
\begin{gathered}
Q_{i i}^{+}(x) Q_{j j}^{+}(x)+Q_{i i}^{-}(x) Q_{j j}^{-}(x) \geqslant \\
Q_{i i}^{+}(x) Q_{j j}^{-}(x)+Q_{i i}^{-}(x) Q_{j j}^{+}(x) \\
+\left(Q_{i j}(x)\right)^{2}
\end{gathered}
$$

Suppose $Q_{i i}(x) \geqslant 0$, write $Q_{i i}=Q_{i i}^{+}-Q_{i i}^{-}$.
Then

$$
\operatorname{val} \boldsymbol{Q}_{i j}^{+}(\boldsymbol{x}) \geqslant \operatorname{val} \boldsymbol{Q}_{i i}^{-}(\boldsymbol{x})
$$

Moreover, if

$$
Q_{i j}(x) Q_{j j}(x) \geqslant\left(Q_{i j}(x)\right)^{2}
$$

then

$$
\begin{gathered}
Q_{i i}^{+}(x) Q_{j j}^{+}(x)+Q_{i i}^{-}(x) Q_{j j}^{-}(x) \geqslant Q_{i i}^{+}(x) Q_{j j}^{-}(x)+Q_{i i}^{-}(x) Q_{j j}^{+}(x) \\
+\left(Q_{i j}(x)\right)^{2}
\end{gathered}
$$

and so

$$
\operatorname{val} Q_{i j}^{+}(x)+\operatorname{val} Q_{i j}^{+}(x) \geqslant 2 \operatorname{val} Q_{i j}(x)
$$

Tropical Metzler spectrahedra

Theorem (tropical Metzler spectrahedra)
For tropically generic Metzler matrices $\left(\boldsymbol{Q}^{(k)}\right)_{k}$ the set $\operatorname{val}(\mathcal{S})$ is described by the tropical minor inequalities of order 1 and 2,

$$
\begin{gathered}
\forall i, \max _{\boldsymbol{Q}_{i i}^{(k)}>0}\left(x_{k}+\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(k)}\right)\right) \geqslant \max _{\boldsymbol{Q}_{j j}^{(I)}<0}\left(x_{l}+\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(I)}\right)\right) \\
\text { and }
\end{gathered}
$$

$$
\begin{aligned}
\forall i \neq j, \max _{\boldsymbol{Q}_{i i}^{(k)}>0}\left(x_{k}+\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(k)}\right)\right) & +\max _{\boldsymbol{Q}_{j j}^{(k)}>0}\left(x_{k}+\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(k)}\right)\right) \\
& \geqslant 2 \max _{\boldsymbol{Q}_{i j}^{(l)}<0}\left(x_{l}+\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(\prime)}\right)\right) .
\end{aligned}
$$

Tropical Metzler spectrahedra

Theorem (tropical Metzler spectrahedra)
For tropically generic Metzler matrices $\left(\boldsymbol{Q}^{(k)}\right)_{k}$ the set $\operatorname{val}(\mathcal{S})$ is described by the tropical minor inequalities of order 1 and 2,

$$
\begin{aligned}
& \forall i, \max _{\boldsymbol{Q}_{i i}^{(k)}>0}\left(x_{k}+\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(k)}\right)\right) \geqslant \max _{\boldsymbol{Q}_{j j}^{(I)}<0}\left(x_{l}+\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(I)}\right)\right) \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\forall i \neq j, \max _{\boldsymbol{Q}_{i i}^{(k)}>0}\left(x_{k}+\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(k)}\right)\right) & +\max _{\boldsymbol{Q}_{j j}^{(k)}>0}\left(x_{k}+\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(k)}\right)\right) \\
& \geqslant 2 \max _{\boldsymbol{Q}_{i j}^{(l)}<0}\left(x_{l}+\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(l)}\right)\right) .
\end{aligned}
$$

Extends the characterization of $\operatorname{val}(S D P C O N E)$ by Yu. .

From spectrahedra to Shapley operators

Lemma

The set $\operatorname{val}(\mathcal{S})$ can be equivalently defined as the set of all x such that for all k we have

$$
\begin{aligned}
x_{k} \leqslant \min _{Q_{i j}^{(k)}<0}\left(-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)+\frac{1}{2}\right. & \left(\max _{\boldsymbol{Q}_{i j}^{(l)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(\prime)}\right)+x_{l}\right)\right. \\
& \left.\left.+\max _{\boldsymbol{Q}_{i j}^{(l)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(I)}\right)+x_{l}\right)\right)\right) .
\end{aligned}
$$

In other words, we have

$$
\operatorname{val}(\mathcal{S})=\left\{x \in(\mathbb{R} \cup\{-\infty\})^{n}: x \leqslant F(x)\right\},
$$

where F is a Shapley operator of a stochastic mean payoff game. We denote this game by Γ.

Reading the Game on the Shapley Operator

$$
\begin{aligned}
x_{k} \leqslant \min _{Q_{i j}^{(i j}<0}\left(-\operatorname{val}\left(Q_{i j}^{(k)}\right)+\right. & \frac{1}{2}\left(\max _{Q_{i}^{(I)}>0}\left(\operatorname{val}\left(Q_{i j}^{(l)}\right)+x_{l}\right)\right. \\
& \left.\left.+\max _{Q_{i j}^{(I)}>0}\left(\operatorname{val}\left(Q_{i j}^{(1)}\right)+x_{l}\right)\right)\right) .
\end{aligned}
$$

Reading the Game on the Shapley Operator

$$
\begin{aligned}
x_{k} \leqslant \min _{Q_{i j}^{(k)}<0}\left(-\operatorname{val}\left(Q_{i j}^{(k)}\right)+\right. & \frac{1}{2}\left(\max _{Q_{i} \rightarrow 0}\left(\operatorname{val}\left(Q_{i j}^{(l)}\right)+x_{l}\right)\right. \\
& \left.\left.+\max _{Q_{i j}^{(I)}>0}\left(\operatorname{val}\left(Q_{i j}^{(1)}\right)+x_{I}\right)\right)\right) .
\end{aligned}
$$

MIN wants to show infeasibility, MAX feasibility

Reading the Game on the Shapley Operator

$$
\begin{aligned}
x_{k} \leqslant \min _{\boldsymbol{Q}_{i j}^{(k)}<0}\left(-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)+\frac{1}{2}(\right. & \max _{\boldsymbol{Q}_{i i}^{(I)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(I)}\right)+x_{l}\right) \\
& \left.\left.+\max _{\boldsymbol{Q}_{j j}^{(I)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(l)}\right)+x_{l}\right)\right)\right) .
\end{aligned}
$$

MIN wants to show infeasibility, MAX feasibility

- state of MIN, $x_{k}, 1 \leqslant k \leqslant n$

Reading the Game on the Shapley Operator

$$
\begin{aligned}
x_{k} \leqslant \min _{\boldsymbol{Q}_{i j}^{(k)}<0}\left(-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)+\frac{1}{2}(\right. & \max _{\boldsymbol{Q}_{i i}^{(l)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(I)}\right)+x_{l}\right) \\
& \left.\left.+\max _{\boldsymbol{Q}_{j j}^{(1)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(I)}\right)+x_{l}\right)\right)\right) .
\end{aligned}
$$

MIN wants to show infeasibility, MAX feasibility

- state of MIN, $x_{k}, 1 \leqslant k \leqslant n$
- MIN chooses $\{i, j\}, 1 \leqslant i \neq j \leqslant m$ or $\{i\}$ with $Q_{i i}^{k}<0$, MAX pays to MIN val $\boldsymbol{Q}_{i j}^{(k)}$

Reading the Game on the Shapley Operator

$$
\begin{aligned}
x_{k} \leqslant \min _{\boldsymbol{Q}_{i j}^{(k)}<0}\left(-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)+\frac{1}{2}(\right. & \max _{\boldsymbol{Q}_{i i}^{(I)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(I)}\right)+x_{l}\right) \\
& \left.\left.+\max _{\boldsymbol{Q}_{j j}^{(I)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(I)}\right)+x_{l}\right)\right)\right) .
\end{aligned}
$$

MIN wants to show infeasibility, MAX feasibility

- state of MIN, $x_{k}, 1 \leqslant k \leqslant n$
- MIN chooses $\{i, j\}, 1 \leqslant i \neq j \leqslant m$ or $\{i\}$ with $\boldsymbol{Q}_{i i}^{k}<0$, MAX pays to MIN val $\boldsymbol{Q}_{i j}^{(k)}$
- NATURE throws a dice to decide whether i or j is the next state

Reading the Game on the Shapley Operator

$$
\begin{aligned}
x_{k} \leqslant \min _{\boldsymbol{Q}_{i j}^{(k)}<0}\left(-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)+\frac{1}{2}(\right. & \max _{\boldsymbol{Q}_{i i}^{(l)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(I)}\right)+x_{l}\right) \\
& \left.\left.+\max _{\boldsymbol{Q}_{j j}^{(I)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(I)}\right)+x_{l}\right)\right)\right) .
\end{aligned}
$$

MIN wants to show infeasibility, MAX feasibility

- state of MIN, $x_{k}, 1 \leqslant k \leqslant n$
- MIN chooses $\{i, j\}, 1 \leqslant i \neq j \leqslant m$ or $\{i\}$ with $\boldsymbol{Q}_{i i}^{k}<0$, MAX pays to MIN val $\boldsymbol{Q}_{i j}^{(k)}$
- NATURE throws a dice to decide whether i or j is the next state
- suppose next state of MAX, $i, 1 \leqslant i \leqslant m$,

Reading the Game on the Shapley Operator

$$
\begin{aligned}
x_{k} \leqslant \min _{\boldsymbol{Q}_{i j}^{(k)}<0}\left(-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)+\frac{1}{2}(\right. & \max _{\boldsymbol{Q}_{i i}^{(l)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(I)}\right)+x_{l}\right) \\
& \left.\left.+\max _{\boldsymbol{Q}_{j j}^{(I)}>0}\left(\operatorname{val}\left(\boldsymbol{Q}_{j j}^{(I)}\right)+x_{l}\right)\right)\right) .
\end{aligned}
$$

MIN wants to show infeasibility, MAX feasibility

- state of MIN, $x_{k}, 1 \leqslant k \leqslant n$
- MIN chooses $\{i, j\}, 1 \leqslant i \neq j \leqslant m$ or $\{i\}$ with $\boldsymbol{Q}_{i i}^{k}<0$, MAX pays to MIN val $\boldsymbol{Q}_{i j}^{(k)}$
- NATURE throws a dice to decide whether i or j is the next state
- suppose next state of MAX, $i, 1 \leqslant i \leqslant m$,
- MAX moves to x_{l} such that $Q_{i i}^{(I)}>0$, MIN pays to MAX $\operatorname{val} Q_{i i}^{(I)}$.

Main example revisited

$Q^{(1)}:=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & t^{-1} & 0 \\ 0 & 0 & 0\end{array}\right]$,
$\boldsymbol{Q}^{(2)}:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & t^{9 / 4}\end{array}\right]$,
$\boldsymbol{Q}^{(3)}:=\left[\begin{array}{ccc}t & 0 & -t^{3 / 4} \\ 0 & t^{-5 / 4} & -1 \\ -t^{3 / 4} & -1 & 0\end{array}\right]$.

Construction of Γ
We construct Γ as follows:

Main example revisited

$\boldsymbol{Q}^{(1)}:=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & t^{-1} & 0 \\ 0 & 0 & 0\end{array}\right]$,

$Q^{(2)}:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & t^{9 / 4}\end{array}\right]$,
$\boldsymbol{Q}^{(3)}:=\left[\begin{array}{ccc}t & 0 & -t^{3 / 4} \\ 0 & t^{-5 / 4} & -1 \\ -t^{3 / 4} & -1 & 0\end{array}\right]$.

Construction of Γ
The number of matrices (here: 3) defines the number of states controlled by Player Min.

Main example revisited

$\boldsymbol{Q}^{(1)}:=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & t^{-1} & 0 \\ 0 & 0 & 0\end{array}\right]$,
$\boldsymbol{Q}^{(2)}:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & t^{9 / 4}\end{array}\right]$,
$\boldsymbol{Q}^{(3)}:=\left[\begin{array}{ccc}t & 0 & -t^{3 / 4} \\ 0 & t^{-5 / 4} & -1 \\ -t^{3 / 4} & -1 & 0\end{array}\right]$.

Construction of Γ
The size of matrices (here: 3×3) defines the number of states controlled by Player Max (here: 3).

Main example revisited

$Q^{(1)}:=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & t^{-1} & 0 \\ 0 & 0 & 0\end{array}\right]$,
$Q^{(2)}:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & t^{9 / 4}\end{array}\right]$,
$\boldsymbol{Q}^{(3)}:=\left[\begin{array}{ccc}t & 0 & -t^{3 / 4} \\ 0 & t^{-5 / 4} & -1 \\ -t^{3 / 4} & -1 & 0\end{array}\right]$.

Construction of Γ
If $\boldsymbol{Q}_{i i}^{(k)}$ is negative, then Player Min can move from state k to state i. After this move Player Max receives $-\operatorname{val}\left(\boldsymbol{Q}_{i i}^{(k)}\right)$.

Main example revisited

$\boldsymbol{Q}^{(1)}:=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & \mathrm{t}^{-1} & 0 \\ 0 & 0 & 0\end{array}\right]$,
$\boldsymbol{Q}^{(2)}:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \mathbf{t}^{9 / 4}\end{array}\right]$,
$\boldsymbol{Q}^{(3)}:=\left[\begin{array}{ccc}\mathbf{t} & 0 & -t^{3 / 4} \\ 0 & \mathrm{t}^{-5 / 4} & -1 \\ -t^{3 / 4} & -1 & 0\end{array}\right]$.

Construction of Γ

If $\boldsymbol{Q}_{i i}^{(k)}$ is positive, then Player Max can move from state i to state k. After this move Player Max receives val $\left(Q_{i i}^{(k)}\right)$.

Main example revisited

$\boldsymbol{Q}^{(1)}:=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & t^{-1} & 0 \\ 0 & 0 & 0\end{array}\right]$,
$\boldsymbol{Q}^{(2)}:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & t^{9 / 4}\end{array}\right]$,
$\boldsymbol{Q}^{(3)}:=\left[\begin{array}{ccc}t & 0 & -\mathbf{t}^{3 / 4} \\ 0 & t^{-5 / 4} & -\mathbf{1} \\ -\mathbf{t}^{3 / 4} & -\mathbf{1} & 0\end{array}\right]$.

Construction of Γ
If $\boldsymbol{Q}_{i j}^{(k)}$ is nonzero, $i \neq j$, then Player Min have a coin-toss move from state k to states (i, j) and Player Max receives $-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)$.

Main example revisited

$\boldsymbol{Q}^{(1)}:=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & t^{-1} & 0 \\ 0 & 0 & 0\end{array}\right]$,
$\boldsymbol{Q}^{(2)}:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & t^{9 / 4}\end{array}\right]$,
$\boldsymbol{Q}^{(3)}:=\left[\begin{array}{ccc}t & 0 & -t^{3 / 4} \\ 0 & t^{-5 / 4} & -1 \\ -t^{3 / 4} & -1 & 0\end{array}\right]$.

Construction of Γ

If $\boldsymbol{Q}_{i j}^{(k)}$ is nonzero, $i \neq j$, then Player Min have a coin-toss move from state k to states (i, j) and Player Max receives $-\operatorname{val}\left(\boldsymbol{Q}_{i j}^{(k)}\right)$.

Example

There is only one pair of optimal policies

$$
\begin{aligned}
& 3 \rightarrow\{\boxed{1}, \sqrt[3]{3}\} \\
& 2 \rightarrow(1
\end{aligned}
$$

Example

There is only one pair of optimal policies

$$
\begin{aligned}
& 3 \rightarrow\{\boxed{1}, \boxed{3}\} \\
& 2 \rightarrow(1
\end{aligned}
$$

The value equals $3 / 40>0$.

Example

There is only one pair of optimal policies

$$
\begin{aligned}
& 3 \rightarrow\{\boxed{1}, \boxed{3}\} \\
& 2 \rightarrow(1
\end{aligned}
$$

The value equals $3 / 40>0$.

Corollary
The spectrahedral cone \mathcal{S} has a nontrivial point in the positive orthant $\mathbb{K}_{\geqslant 0}^{3}$.

Example

The Shapley operator is given by
$F(x)=\left(\frac{x_{1}+x_{3}}{2}, x_{1}-1, \frac{x_{2}+x_{3}}{2}+\frac{7}{8}\right)$
and $u=(1.06,0.02,1.13)$ is a
bias vector, $F(u)=\lambda e+u, \lambda=$ value

Corollary
The spectrahedral cone \mathcal{S} has a nontrivial point in the positive orthant $\mathbb{K}_{\geqslant 0}^{3}$. For example, it contains the point $\left(t^{1.06}, t^{0.02}, t^{1.13}\right)$.

Tropical analogue of Helton-Nie conjecture

Helton-Nie conjectured that every convex semialgebraic set is the projection of a spectrahedron.

Tropical analogue of Helton-Nie conjecture

Helton-Nie conjectured that every convex semialgebraic set is the projection of a spectrahedron.

Scheiderer (SIAGA, 2018) showed that the cone of nonnegative forms of degree $2 d$ in n variables is not representable in this way unless $2 d=2$ or $n \leqslant 2$ or $(n, 2 d)=(3,4)$, disproving the conjecture. His result implies the conjecture is also false over \mathbb{K}. However...

Tropical analogue of Helton-Nie conjecture, cont.

Theorem (Allamigeon, Gaubert, and Skomra, MEGA2017+JSC.) Fix a set $\mathcal{S} \subset \mathbb{R}^{n}$. TFAE

- \mathcal{S} is the image by val of a convex semialgebraic set of $\mathbb{K}_{>0}^{n}$

Tropical analogue of Helton-Nie conjecture, cont.

Theorem (Allamigeon, Gaubert, and Skomra, MEGA2017+JSC.) Fix a set $\mathcal{S} \subset \mathbb{R}^{n}$. TFAE

- \mathcal{S} is the image by val of a convex semialgebraic set of $\mathbb{K}_{>0}^{n}$
- \mathcal{S} is the image by val of the image by proj : $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}(p \geqslant n)$ of a spectrahedron of $\mathbb{K}_{>0}^{P}$

Tropical analogue of Helton-Nie conjecture, cont.

Theorem (Allamigeon, Gaubert, and Skomra, MEGA2017+JSC.) Fix a set $\mathcal{S} \subset \mathbb{R}^{n}$. TFAE

- \mathcal{S} is the image by val of a convex semialgebraic set of $\mathbb{K}_{>0}^{n}$
- \mathcal{S} is the image by val of the image by proj : $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}(p \geqslant n)$ of a spectrahedron of $\mathbb{K}_{>0}^{p}$
- \mathcal{S} is tropically convex, closed and semilinear

Tropical analogue of Helton-Nie conjecture, cont.

Theorem (Allamigeon, Gaubert, and Skomra, MEGA2017+JSC.)
Fix a set $\mathcal{S} \subset \mathbb{R}^{n}$. TFAE

- \mathcal{S} is the image by val of a convex semialgebraic set of $\mathbb{K}_{>0}^{n}$
- \mathcal{S} is the image by val of the image by proj : $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}(p \geqslant n)$ of a spectrahedron of $\mathbb{K}_{>0}^{p}$
- \mathcal{S} is tropically convex, closed and semilinear
- There exists a stochastic game with Shapley operator $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\mathcal{S}=\left\{x \in \mathbb{R}^{n} \mid x \leqslant F(x)\right\}$,

Tropical analogue of Helton-Nie conjecture, cont.

Theorem (Allamigeon, Gaubert, and Skomra, MEGA2017+JSC.)
Fix a set $\mathcal{S} \subset \mathbb{R}^{n}$. TFAE

- \mathcal{S} is the image by val of a convex semialgebraic set of $\mathbb{K}_{>0}^{n}$
- \mathcal{S} is the image by val of the image by proj : $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}(p \geqslant n)$ of a spectrahedron of $\mathbb{K}_{>0}^{p}$
- \mathcal{S} is tropically convex, closed and semilinear
- There exists a stochastic game with Shapley operator $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\mathcal{S}=\left\{x \in \mathbb{R}^{n} \mid x \leqslant F(x)\right\}$,
- There exists a stochastic game with transition probabilities $0, \frac{1}{2}, 1$ and Shapley operator $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$, with $p \geqslant n$, such that $\mathcal{S}=\operatorname{proj}\left\{x \in \mathbb{R}^{p} \mid x \leqslant F(x)\right\}$

How to solve the game in practice

- Gurvich, Karzanov and Khachyan pumping algorithm (1988) iterative algorithm with hard (discontinuous) thresholds, generalized to the stochastic case by Boros, Elbassioni, Gurvich and Makino (2015, hard complexity estimates)

How to solve the game in practice

- Gurvich, Karzanov and Khachyan pumping algorithm (1988) iterative algorithm with hard (discontinuous) thresholds, generalized to the stochastic case by Boros, Elbassioni, Gurvich and Makino (2015, hard complexity estimates)
- policy iteration Hoffman-Karp 66 irreducible case, Denardo 67 discounted case (strongly polynomial by Ye, Hansen, Miltersen, Zwick 2011), stochastic mean payoff case Akian, Cochet, Detournay, SG $(2006,2012)$.

How to solve the game in practice

- Gurvich, Karzanov and Khachyan pumping algorithm (1988) iterative algorithm with hard (discontinuous) thresholds, generalized to the stochastic case by Boros, Elbassioni, Gurvich and Makino (2015, hard complexity estimates)
- policy iteration Hoffman-Karp 66 irreducible case, Denardo 67 discounted case (strongly polynomial by Ye, Hansen, Miltersen, Zwick 2011), stochastic mean payoff case Akian, Cochet, Detournay, SG $(2006,2012)$.
- value iteration, Zwick Paterson (1996) in the deterministic case.

How to solve the game in practice

- Gurvich, Karzanov and Khachyan pumping algorithm (1988) iterative algorithm with hard (discontinuous) thresholds, generalized to the stochastic case by Boros, Elbassioni, Gurvich and Makino (2015, hard complexity estimates)
- policy iteration Hoffman-Karp 66 irreducible case, Denardo 67 discounted case (strongly polynomial by Ye, Hansen, Miltersen, Zwick 2011), stochastic mean payoff case Akian, Cochet, Detournay, SG (2006, 2012).
- value iteration, Zwick Paterson (1996) in the deterministic case.
- more refined value type iteration, special case of simple stochastic games Ibsen-Jensen, Miltersen (2012)

Basic value iteration

$$
\mathbf{t} x:=\max _{i} x_{i}(\text { read "top" }), \mathbf{b} x:=\min _{i} x_{i}(\text { read "bot" })
$$

1: procedure ValueIteration (F)
2: $\quad \triangleright F$ a Shapley operator from \mathbb{R}^{n} to \mathbb{R}^{n}
3: $\quad \triangleright$ The algorithm will report whether Player Max or Player Min wins the mean payoff game represented by F
4: $\quad u:=0 \in \mathbb{R}^{n}$
5: while $\mathbf{t}(u)>0$ and $\mathbf{b}(u)<0$ do $u:=F(u) \quad$ At iteration ℓ,
$u=F^{\ell}(0)$ is the value vector of the game in finite horizon ℓ
6: done
7: if $\mathbf{t}(u) \leqslant 0$ then return "Player Min wins"
8: else return "Player Max wins"
9: end
10: end
This is what we implemented to solve the benchmarks of large scale nonarchimedean SDP.

Complexity analysis?

Complexity analysis? Answer: Metric geometry tool

Funk, Hilbert and Thompson metric

C closed convex pointed cone, $x \leqslant y$ if $y-x \in C$, Funk reverse metric (Papadopoulos, Troyanov):

$$
\operatorname{RFunk}(x, y):=\log \inf \{\lambda>0 \mid \lambda x \geqslant y\}
$$

Funk, Hilbert and Thompson metric

C closed convex pointed cone, $x \leqslant y$ if $y-x \in C$, Funk reverse metric (Papadopoulos, Troyanov):

$$
\operatorname{RFunk}(x, y):=\log \inf \{\lambda>0 \mid \lambda x \geqslant y\}
$$

$C=\mathbb{R}_{+}^{n}, \operatorname{RFunk}(x, y)=\log \max _{i} y_{i} / x_{i}$ (tropical sesquilinear form)

Funk, Hilbert and Thompson metric

C closed convex pointed cone, $x \leqslant y$ if $y-x \in C$, Funk reverse metric (Papadopoulos, Troyanov):

$$
\operatorname{RFunk}(x, y):=\log \inf \{\lambda>0 \mid \lambda x \geqslant y\}
$$

$C=\mathbb{R}_{+}^{n}, \operatorname{RFunk}(x, y)=\log \max _{i} y_{i} / x_{i}$ (tropical sesquilinear form)
$C=S_{n}^{+}=$positive semidefinite matrices, $\operatorname{RFunk}(x, y)=\log \max \operatorname{spec}\left(x^{-1} y\right)$.

Funk, Hilbert and Thompson metric

C closed convex pointed cone, $x \leqslant y$ if $y-x \in C$, Funk reverse metric (Papadopoulos, Troyanov):

$$
\operatorname{RFunk}(x, y):=\log \inf \{\lambda>0 \mid \lambda x \geqslant y\}
$$

$C=\mathbb{R}_{+}^{n}, \operatorname{RFunk}(x, y)=\log \max _{i} y_{i} / x_{i}$ (tropical sesquilinear form)
$C=S_{n}^{+}=$positive semidefinite matrices,
$\operatorname{RFunk}(x, y)=\log \max \operatorname{spec}\left(x^{-1} y\right)$.
Lemma
$F: \operatorname{int} C \rightarrow \operatorname{int} C$ is order preserving and homogeneous of degree 1 iff

$$
\operatorname{RFunk}(F(x), F(y)) \leqslant \operatorname{RFunk}(x, y), \quad \forall x, y \in \operatorname{int} C .
$$

We can symmetrize Funk's metric in two ways
$d_{T}(x, y)=\max (\operatorname{RFunk}(x, y), \operatorname{RFunk}(y, x))$
Thompsons' part metric
$d_{H}(x, y):=\operatorname{RFunk}(x, y)+\operatorname{RFunk}(y, x) \quad$ Hilbert's projective metric (plays the role of Euclidean metric in tropical convexity Cohen, SG, Quadrat 2004)

$$
d_{H}(x, y)=\|\log x-\log y\|_{H} \quad \text { where } \quad\|z\|_{H}:=\max _{i \in[n]} z_{i}-\min _{i \in[n]} z_{i} .
$$

A ball in Hilbert's projective metric is classically and tropically convex.

$$
\begin{gathered}
\mathcal{S}(F):=\left\{x \in \mathbb{T}^{n}: x \leqslant F(x)\right\}, \quad \mathbb{T}:=\mathbb{R} \cup\{-\infty\} \\
\overline{\mathrm{cw}}(F)=\max _{i} \bar{v}_{i}, \quad \underline{\mathrm{cw}}(F)=\min _{i} \bar{v}_{i}
\end{gathered}
$$

(best and worst mean payoffs).

$$
\begin{gathered}
\mathcal{S}(F):=\left\{x \in \mathbb{T}^{n}: x \leqslant F(x)\right\}, \quad \mathbb{T}:=\mathbb{R} \cup\{-\infty\} \\
\overline{\mathrm{cw}}(F)=\max _{i} \bar{v}_{i}, \quad \underline{\mathrm{cw}}(F)=\min _{i} \bar{v}_{i}
\end{gathered}
$$

(best and worst mean payoffs).
We say that $u \in \mathbb{R}^{n}$ is a bias (tropical eigenvector) if

$$
F(u)=\lambda e+u
$$

Then, $\lambda=\underline{\mathrm{cw}}(F)=\overline{\mathrm{cw}}(F)$, denoted by $\rho(F)$ for "spectral radius", it is unique.

$$
\begin{gathered}
\mathcal{S}(F):=\left\{x \in \mathbb{T}^{n}: x \leqslant F(x)\right\}, \quad \mathbb{T}:=\mathbb{R} \cup\{-\infty\} \\
\overline{\mathrm{cw}}(F)=\max _{i} \bar{v}_{i}, \quad \underline{\mathrm{cw}}(F)=\min _{i} \bar{v}_{i}
\end{gathered}
$$

(best and worst mean payoffs).
We say that $u \in \mathbb{R}^{n}$ is a bias (tropical eigenvector) if

$$
F(u)=\lambda e+u
$$

Then, $\lambda=\underline{\mathrm{cw}}(F)=\overline{\mathrm{cw}}(F)$, denoted by $\rho(F)$ for "spectral radius", it is unique.

Existence of u guaranteed by ergodicity conditions, Akian, SG, Hochart, DCSD A.

Definition
 An order-preserving and additively homogeneous self-map F of \mathbb{T}^{n} is said to be diagonal free when $F_{i}(x)$ is independent of x_{i} for all $i \in[n]$.

Definition

An order-preserving and additively homogeneous self-map F of \mathbb{T}^{n} is said to be diagonal free when $F_{i}(x)$ is independent of x_{i} for all $i \in[n]$.

Theorem

Let F be a diagonal free self-map of \mathbb{T}^{n}. Then, $\mathcal{S}(F)$ contains a Hilbert ball of positive radius if and only if $\underline{\mathrm{cw}}(F)>0$. Moreover, when $\mathcal{S}(F)$ contains a Hilbert ball of positive radius, the supremum of the radii of the Hilbert balls contained in $\mathcal{S}(F)$ coincides with cw (F).

Biggest Hilbert ball in a tropical polyhedra

Extends a theorem of Sergeev, showing that the tropical eigenvalue of A gives the inner radius of the polytropes $\{x \mid x \geqslant A x\}$.

Biggest Hilbert ball in a tropical polyhedra

Extends a theorem of Sergeev, showing that the tropical eigenvalue of A gives the inner radius of the polytropes $\{x \mid x \geqslant A x\}$.

$$
\mathcal{C}:=\left\{\boldsymbol{x} \in \mathbb{K}^{n}: \boldsymbol{Q}^{(0)}+\boldsymbol{x}_{1} \boldsymbol{Q}^{(1)}+\cdots+\boldsymbol{x}_{n} \boldsymbol{Q}^{(n)} \text { is PSD }\right\}
$$

$F: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ Shapley operator of \mathcal{C}.
$\mathscr{P}(F)$: does there exist $x \in \mathbb{T}^{n}$ such that $x \not \equiv-\infty$ and $x \leqslant F(x)$?

$$
\mathcal{C}:=\left\{x \in \mathbb{K}^{n}: \boldsymbol{Q}^{(0)}+\boldsymbol{x}_{1} \boldsymbol{Q}^{(1)}+\cdots+\boldsymbol{x}_{n} \boldsymbol{Q}^{(n)} \text { is } \mathrm{PSD}\right\}
$$

$F: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ Shapley operator of \mathcal{C}.
$\mathscr{P}(F)$: does there exist $x \in \mathbb{T}^{n}$ such that $x \not \equiv-\infty$ and $x \leqslant F(x)$?
$\mathscr{P}_{\mathbb{R}}(F)$: does there exist $x \in \mathbb{R}^{n}$ such that $x \ll F(x)$?
Theorem (Allamigeon, SG, Skomra)
(1) if $\mathscr{P}(F)$ is infeasible, or equivalently, $\mathcal{S}(F)$ is trivial, then \mathcal{C} is trivial.
(1) if $\mathscr{P}_{\mathbb{R}}(F)$ is feasible, or equivalently, $\mathcal{S}(F)$ is strictly nontrivial, then \mathcal{C} is strictly nontrivial, meaning that there exists $\boldsymbol{x} \in \mathbb{K}_{>0}^{n}$ such that the matrix $\boldsymbol{x}_{1} \boldsymbol{Q}^{(1)}+\cdots+\boldsymbol{x}_{n} \boldsymbol{Q}^{(n)}$ is positive definite.

We define the condition number cond (F) of the above problem $\mathscr{P}(F)$ by:

$$
\begin{equation*}
\left(\inf \left\{\|u\|_{\infty}: u \in \mathbb{R}^{n}, \mathscr{P}(u+F) \text { is infeasible }\right\}\right)^{-1} \tag{1}
\end{equation*}
$$

if $\mathscr{P}(F)$ is feasible, and

$$
\begin{equation*}
\left(\inf \left\{\|u\|_{\infty}: u \in \mathbb{R}^{n}, \mathscr{P}(u+F) \text { is feasible }\right\}\right)^{-1} \tag{2}
\end{equation*}
$$

if $\mathscr{P}(F)$ is infeasible.

We define the condition number cond (F) of the above problem $\mathscr{P}(F)$ by:

$$
\begin{equation*}
\left(\inf \left\{\|u\|_{\infty}: u \in \mathbb{R}^{n}, \mathscr{P}(u+F) \text { is infeasible }\right\}\right)^{-1} \tag{1}
\end{equation*}
$$

if $\mathscr{P}(F)$ is feasible, and

$$
\begin{equation*}
\left(\inf \left\{\|u\|_{\infty}: u \in \mathbb{R}^{n}, \mathscr{P}(u+F) \text { is feasible }\right\}\right)^{-1} \tag{2}
\end{equation*}
$$

if $\mathscr{P}(F)$ is infeasible.
$u+F$: Shapley operator of a game in which in state i, Max receives an additional payment of u_{i}.
$\operatorname{cond}_{\mathbb{R}}(F)$ is defined as cond (F), considering $\mathscr{P}_{\mathbb{R}}(F)$.
Proposition
Let F be a continuous, order-preserving, and additively homogeneous self-map of \mathbb{T}^{n}. Then,

$$
\operatorname{cond}_{\mathbb{R}}(F)=|\underline{\operatorname{cw}}(F)|^{-1} \text { and } \operatorname{cond}(F)=|\overline{\mathrm{cw}}(F)|^{-1} .
$$

$$
R(F):=\inf \left\{\|u\|_{\mathrm{H}}: u \in \mathbb{R}^{n}, F(u)=\rho(F)+u\right\} .
$$

If F is assumed to have a bias vector $v \in \mathbb{R}^{n}$, i.e. $F(v)=\rho(F)+v$,

$$
|\rho(F)|^{-1}=|\underline{\operatorname{cw}}(F)|^{-1}=|\overline{\mathrm{cw}}(F)|^{-1}=\operatorname{cond}_{\mathbb{R}}(F)=\operatorname{cond}(F) .
$$

Theorem (Allamigeon, SG, Katz, Skomra)
Suppose that the Shapley operator F has a bias vector and that $\rho(F) \neq 0$. Then ValueIteration terminates after

$$
N_{\mathrm{vi}} \leqslant R(F) \operatorname{cond}(F)
$$

iterations and returns the correct answer.
Compare with $\log (R / r)$ in the ellipsoid / interior point methods.

$$
\begin{equation*}
F=A^{\sharp} \circ B \circ P \tag{3}
\end{equation*}
$$

where $A \in \mathbb{T}^{m \times n}, B \in \mathbb{T}^{m \times q}$, integer entries, $P \in \mathbb{R}^{q \times n}$ row-stochastic
$W:=\max \left\{\left|A_{i j}-B_{i h}\right|: A_{i j} \neq-\infty, B_{i h} \neq-\infty, i \in[m], j \in[n], h \in[q]\right.$.
Probabilities $P_{i l}$ rational with a common denominator $M \in \mathbb{N}_{>0}$, $P_{i l}=Q_{i l} / M$, where $Q_{i l} \in[M]$ for all $i \in[q]$ and $I \in[n]$. A state $i \in[q]$ is nondeterministic if there are at least two indices $I, I^{\prime} \in[n]$ such that $P_{i l}>0$ and $P_{i \prime}>0$.

Theorem

Let F be a Shapley operator as above, still supposing that F has a bias vector and that $\rho(F)$ is nonzero. If k is the number of nondeterministic states of the game, then $\operatorname{cond}(F) \leqslant n M^{\min \{k, n-1\}}$.

Theorem

Let F be a Shapley operator as above, still supposing that F has a bias vector and that $\rho(F)$ is nonzero. If k is the number of nondeterministic states of the game, then $\operatorname{cond}(F) \leqslant n M^{\min \{k, n-1\}}$.

Relies on an estimate of Skomra of denominators of invariant measures, obtained from Tutte matrix tree theorem, improves Boros, Elbassioni, Gurvich and Makino

Theorem (Allamigeon, SG, Katz, Skomra)

$$
R(F) \leqslant 10 n^{2} W M^{\min \{k, n-1\}}
$$

We construct a bias by vanishing discount, which yields of the bound on $R(F)$.

Corollary

Let F be the above Shapley operator, still supposing that it has a bias vector and that $\rho(F)$ is nonzero. Then, procedure ValueIteration stops after

$$
\begin{equation*}
N_{\mathrm{vi}} \leqslant 10 n^{3} W M^{2 \min \{k, n-1\}} \tag{4}
\end{equation*}
$$

iterations and correctly decides which of the two players is winning.

In the deterministic case, we recover Zwick-Paterson bound.
Corollary
Let $F=A^{\sharp} \circ B$ be the Shapley operator of a deterministic game, where the finite entries of $A, B \in \mathbb{T}^{m \times n}$ are integers. If there exists $v \in \mathbb{R}^{n}$ such that $F(v)=\rho(F)+v$ with $\rho(F) \neq 0$, then

$$
N_{\mathrm{vi}} \leqslant 2 n^{2} W
$$

The assumption $\rho(F) \neq 0$ can be relaxed, by appealing to the following perturbation and scaling argument. This leads to a bound in which the exponents of M and of n are increased.

Corollary

Let $\mu:=n M^{\min \{k, n-1\}}$. Then, procedure ValueIteration, applied to the perturbed and rescaled Shapley operator $1+2 \mu F$, satisfies

$$
N_{\mathrm{vi}} \leqslant 21 n^{4} W M^{3 \min \{k, n-1\}}
$$

iterations, and this holds unconditionally. If the algorithm reports that Max wins, then Max is winning in the original mean payoff game. If the algorithm reports that Min wins, then Min is strictly winning in the original mean payoff game.

The algorithm can be also adapted to work in finite precision arithmetic.

Tropical homotopy

The condition number controls the critical temperature t_{c}^{-1} such that for $t>t_{c}$, the archimedean SDP feasibility problem and tropical SDP feasibility problem have the same answer.

$$
\delta(t):=\max _{Q_{i j}^{(k)} \neq 0}| | Q_{i j}^{(k)}\left|-\log _{t}\right| Q_{i j}^{(k)}(t) \| .
$$

Theorem

Let $m \geq 2$, and v be the value of the stochastic mean payoff game associated with $Q^{(1)}, \ldots, Q^{(n)}$. Let $\lambda:=\max _{k} v_{k}$, and suppose that $\lambda \neq 0$. Take any t such that $\delta(t)<|\lambda|$ and

$$
t>(2(m-1) n)^{1 /(2|\lambda|-2 \delta(t))} .
$$

Then, the spectrahedron $\mathcal{S}(t)$ is nontrivial if and only if λ is positive.

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.
- Extends the equivalence between deterministic mean payoff games and tropical linear programming, Akian, SG, Guterman.

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.
- Extends the equivalence between deterministic mean payoff games and tropical linear programming, Akian, SG, Guterman.
- Extends the tropicalization of the SDP cone by Yu

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.
- Extends the equivalence between deterministic mean payoff games and tropical linear programming, Akian, SG, Guterman.
- Extends the tropicalization of the SDP cone by Yu
- This leads to an algorithm for generic semidefinite feasibility problems over Puiseux series.

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.
- Extends the equivalence between deterministic mean payoff games and tropical linear programming, Akian, SG, Guterman.
- Extends the tropicalization of the SDP cone by Yu
- This leads to an algorithm for generic semidefinite feasibility problems over Puiseux series.
- Metric geometry definition of the condition number, biggest ball in the primal or dual feasible set.

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.
- Extends the equivalence between deterministic mean payoff games and tropical linear programming, Akian, SG, Guterman.
- Extends the tropicalization of the SDP cone by Yu
- This leads to an algorithm for generic semidefinite feasibility problems over Puiseux series.
- Metric geometry definition of the condition number, biggest ball in the primal or dual feasible set.
- Controls the number of value iterations to decide the game

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.
- Extends the equivalence between deterministic mean payoff games and tropical linear programming, Akian, SG, Guterman.
- Extends the tropicalization of the SDP cone by Yu
- This leads to an algorithm for generic semidefinite feasibility problems over Puiseux series.
- Metric geometry definition of the condition number, biggest ball in the primal or dual feasible set.
- Controls the number of value iterations to decide the game
- Recover complexity bound of Boros, Elbassioni, Gurvich, and Makino, with a simpler algorithm.

Concluding remarks

- Showed: stochastic mean payoff games polynomial time equivalent to feasibility of nonarchimedean semidefinite programs with generic valuations.
- Extends the equivalence between deterministic mean payoff games and tropical linear programming, Akian, SG, Guterman.
- Extends the tropicalization of the SDP cone by Yu
- This leads to an algorithm for generic semidefinite feasibility problems over Puiseux series.
- Metric geometry definition of the condition number, biggest ball in the primal or dual feasible set.
- Controls the number of value iterations to decide the game
- Recover complexity bound of Boros, Elbassioni, Gurvich, and Makino, with a simpler algorithm.
- Controls the critical temperature under which the SDP feasibility problem "freezes" in its tropical state.

Thank you !

References

屢 X. Allamigeon, S. Gaubert, and M. Skomra. "Solving Generic Nonarchimedean Semidefinite Programs Using Stochastic Game Algorithms". In: Journal of Symbolic Computation 85 (2018), pp. 25-54. DOI: 10.1016/j.jsc.2017.07.002. eprint: 1603.06916.

- X. Allamigeon, S. Gaubert, and M. Skomra. "The tropical analogue of the Helton-Nie conjecture is true". In: J. Symbolic Computation (2018). DOI: 10.1016/j.jsc.2018.06.017. eprint: arXiv:1801. 02089.
(M. Develin and J. Yu. "Tropical polytopes and cellular resolutions". In: Experimental Mathematics 16.3 (2007).

References II

(ing van den Dries and P. Speissegger. "The real field with convergent generalized power series". In: Transactions of the AMS 350.11 (1998), pp. 4377-4421.
(R. Henrion, S. Naldi, and M. Safey El Din. "Exact algorithms for linear matrix inequalities". In: SIAM J. Opt. 26.4 (2016), pp. 2512-2539.
圊 E. de Klerk and F. Vallentin. "On the Turing model complexity of interior point methods for semidefinite programming". In: SIAM J. Opt. 26.3 (2016), pp. 1944-1961.
围 Claus Scheiderer. "Spectrahedral Shadows". In: SIAM Journal on Applied Algebra and Geometry 2.1 (2018), pp. 26-44. DOi: 10.1137/17M1118981.

References III

E- J. Yu. "Tropicalizing the positive semidefinite cone". In: Proc. Amer. Math. Soc 143.5 (2015), pp. 1891-1895.

