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Optimization problem

Traditional optimization problem: minimization of a single objective
function over some admissible set A:

min
x∈A

f (x).

The standard gradient descent method1

1 start with a guess x0,

2 follow the direction of the negative
of gradient of f :

xn+1 = xn − γn∇f (xn).

1
picture: https://en.wikipedia.org/wiki/Gradient_descent
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Multi-player differentiable games

n-player differentiable games:

players [n] = {1, . . . , n},
controllable variables: D1 × . . .× Dn where Di ⊂ Rdi and∑n

i=1 di = d .

twice continuously differentiable loss functions:

`i : D1 × . . .× Dn −→ R
w = (w1, . . . ,wn) 7→ `i (w1, . . . ,wn).

The objective of each player is to minimize its loss function:

w∗i = argminwi∈Di
`i (w).

w∗-Nash equilibrium:

w∗i = argminwi∈Di
`i (wi ,w

∗
−i ) ∀i .
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Potential games, Monderer-Shapley 1996

Weighted potential game: there is a function φ : Rd → R and positive
numbers (weights) {αi}ni=1 such that

αi∇wi `i = ∇wiφ ∀i = 1, . . . , n.

when αi = 1 ∀i : exact potential game.

Theorem (Monderer-Shapley 1996)

equivalent characterization:

αi∇2
wiwj

`i = αj∇2
wiwj

`j ∀ i , j .

potential function (uniquely defined up to an additive constant): for
any z ∈ C ([0, 1],Rd) : z

∣∣
t=0,1

= z0,1:

φ(z1)− φ(z0) =
n∑

i=1

αi

ˆ 1

0
z ′i (t) · ∇wi `i (z(t))) dt.
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Potential games

Why potential games?: minimization of the single potential function
instead of n loss functions. Existence and attainability of Nash equilibria

Many applications: economics, theoretical computer science,
computational social science and sociology, wireless networks, and recently
in machine learning

Lloyd S. Shapley (1923-2016): Nobel prize in Economics 2012.

Hong Duong (UoB) Generalized potential games 12 June 2019 5 / 15



Can we enlarge the class of potential games?

The simultaneous gradient of the game:

ξ(w) = (∇w1`1(w), . . . ,∇wn`n(w))T .

weighted potential games:

ξ(w) = M−1∇φ(w) where M = dia(α1, . . . , αn).

linear relation between ξ and ∇φ

Our aim is to extend the class of potential games allowing nonlinear
relation between ξ and ∇φ using a dissipation potential.
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Dissipation potential and its dual

dissipation potential: Ψ : Z× TZ→ R is called a dissipation potential if
for all z ∈ Z
(i) Ψ(z , ·) is convex in the second argument,

(ii) min Ψ(z , ·) = 0 and

(iii) Ψ(z , 0) = 0.

Legendre-Fenchel dual (convex dual):

Ψ∗(z , ζ) = sup
s∈TzZ

{
〈ζ, s〉 −Ψ(z , s)

}
for ζ ∈ T ∗z Z.

equivalent statements, Fenchel 1949:

(i) ξ ∈ DΨ(s) ⇐⇒ (ii) s ∈ DΨ∗(ξ) ⇐⇒ (iii) Ψ(s)+Ψ∗(ξ) = 〈ξ, s〉

Hong Duong (UoB) Generalized potential games 12 June 2019 7 / 15



Our work: generalized potential games

Generalized potential games: if there exists a dissipation potential Ψ and a
potential function φ such that

ξ(w) = DζΨ∗(∇wφ(w)).

Ψ(s) = 1
2s

TMs: recover weighted potential games (exact, M = I ).

Theorem

generalized potential ⇐⇒ D2Ψ(ξ(w))H(w) is symmetric (H(w):
Hessian matrix, [H(w)]ij = ∇2

ij`i ).

for all z ∈ C ([0, 1],Rd), z
∣∣
t=0,1

= z0,1:

φ(z1)− φ(z0) =

ˆ 1

0
z ′(t) ·DsΨ(ξ(z(t))) dt
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Generalized potential games: example

Consider a n-player game with

`1(w) =
R∑

r=1

( k r
fw

αr
1 + 1

w
αr

1+1
1 w

αr
2

2 · · ·w
αr

n
n −

k r
bw

βr
1 + 1

w
βr
1+1

1 w
αr

2
2 · · ·w

βr
n

n

)(
αr
1 − βr

1

)
...

`n(w) =
R∑

r=1

( k r
fw

αr
n + 1

w
αr

1
1 w

αr
2

2 · · ·w
αr

n+1
n − k r

bw

βr
n + 1

w
βr
1

1 w
αr

2
2 · · · c

βr
n+1

n

)(
αr
n − βr

n

)
.

Notations: for w = (w1, . . . ,wn), ααα = (α1, . . . , αn) and r = 1, . . . ,R:

wααα :=
n∏

k=1

wαk

k , αααr := (αr
1, . . . , α

r
n), βββr := (βr

1, . . . , β
r
n).
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Theorem

Suppose that there exists w∞ ∈ Rn
+ such that

k rfww
αααr

∞ = k rbww
βββr

∞ = κr for r = 1, . . . ,R, (∗)

then the above game is generalised potential.

(∗): detailed balanced condition

Proof.

φ(w) :=
n∑

i=1

wi

(
log
( wi

wi∞

)
− 1
)
,

Ψ∗(w,µµµ) =
R∑

r=1

κr
2
`
(wαααr

wαααr

∞
,
wβββ

r

wβββ
r

∞

)(
µµµ · (αααr − βββr )

)2
where

`(a, b) =

{
a−b

log a−log b for a 6= b,

b for a = b.
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Origin of our generalization

classical gradient flow system: linear relation between rates and driving
forces

Rd , standard inner product: ẋ(t) = −∇f (x(t)),

Rd , weighted inner product, 〈x , y〉 = xTAy : ẋ(t) = −A−1∇f (x(t)).

generalized gradient flow systems: nonlinear relation between rates and
driving forces

ẋ(t) = Dξ(Ψ∗(−∇φ(x(t())).

many applications in the modeling of materials (for examples, for plasticity
and ferromagnetism) and in chemical reaction network.
Our construction comes from chemical reaction network.
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Future work

(i)(applications in machine learning) Decomposition of general games:

Balduzzi et. al. (ICML, 2018) & Letcher et.al. (JMLR, 2019)

general game = exact potential game + Hamiltonian game

by decomposing the Hamiltonian into a sum of a symmetric and an
anti-symmetric part using Helmholtz’s decomposition.

on-going work: decomposition of games as in GENERIC-evolution
(Ottinger, 2005)

∂tz = L(z)
δE

δz
+ ∂ξΨ

∗(z ,
δS

δz
),

where L: anti-symmetric operator, E , S : energy and entropy functional.
GENERIC is both geometrical and physical/thermodynamical meaningful
fulfilling the laws of thermodynamics for a closed system.
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Future work

(ii) (applying in robotics) optimization under uncertainty

Picheny et.al. (JGB, 2018): Bayesian optimization for black-box function.
on-going work: functional Bayesian optimization.

(iii) Game theory in chemical reaction networks: explore more connections
between game theory and chemical reaction network.
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