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Tropical linear algebra

Consider real numbers R ∪ {−∞} equipped with

a� b = a + b, a⊕ b := max(a, b).

Semifield with 0 = −∞, 1 = 0.
I.e. a−1 = −a and @	 a.

Applies to matrices and vectors entry-wise:

(A⊕ B)i ,j := (Ai ,j ⊕ Bi ,j)

(A� B)i ,j :=
⊕
k

Ai ,k � Bkj
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Jacobi identity

Correspondence : I, J minor of A−1 to Jc, Ic minor of A.

Theorem (the classical identity)

For A ∈ GLn(F) , I , J ⊆ [n] s.t. |I | = |J| = k

(DA−1D)
∧k

I ,J
= (det(A))−1A

∧n−k

Jc ,I c
,

where Di ,i = (−1)i and Di ,j = 0 for i 6= j .

(for instance) S. M. Fallat and C. R. Johnson, Totally Nonnegative Matrices.

Princeton press, 2011.
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Jacobi identity

Theorem (the tropical identity)

Let M ∈ Rn×n

max and I , J ⊆ [n] s.t. |I | = |J| = k .
Either:

[D(det(M)−1adj(M))D]∧k
I ,J

= det(M)−1M∧n−k
Jc ,I c

Or:
There exist distinct bijections π, σ ∈ SI ,J such that

[adj(M)]∧k
I ,J

=
⊙
i∈I

adj(M)i ,π(i) =
⊙
i∈I

adj(M)i ,σ(i).

M. Akian, S. Gaubert and N, Tropical Compound Matrix Identities, LAA,

2018.
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How did it form?

The tropical determinant is actually the permanent with respect to
⊕,�. That is

per(A) =
⊕
π∈Sn

⊙
i∈[n]

Ai ,π(i) = max
π∈Sn

∑
i∈[n]

Ai ,π(i),

Graphically: the permutation of optimal weight in the graph of A,
Combinatorially: the ’optimal assignment problem’.

Let π, τ be permutations of identical weight w .
* In supertropical w(π)⊕ w(τ) is sigular.
* In symmetrized w(π)⊕ w(τ) is singular if π and τ are
permutations of opposite signs.
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How did it form?

2013 - PhD (with L.Rowen) - Conjecture: Let A∇ = per−1(A)adj(A) (sort of
inverse). Then (supertropically) coefficient-wise

per(A)fA∇ (x) = xnfA(x−1)⊕ ‘singular polynomial ′.

That is, ⊕A∇I,I corresponds to ⊕AIc,Ic .

[Y.Shitov ’On the Char. Polynomial of a Supertropical Adjoint Matrix’, LAA.]

2015 - Postdoc (with M.Akian and S.Gaubert) - (symmetrized) Tropical Jacobi:
[D(det(M)−1adj(M))D]∧k

I,J
= det(M)−1M∧n−k

Jc ,I c
⊕ ‘singular matrix ′.

So, entry-wise, for every I, J, and including signs.

2016-2018 (with McCaig and Sergeev) - Graph theory version:
Every optimal (1, k)-regular multigraph of M w.r.t. I , J
either: corresponds to an optimal bijection w.r.t. I c , Jc ,
or: there exists another optimal (1, k)-regular w.r.t. I , J.
[That is, combinatorially, without signs, which led to the
application.]
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Definitions: digraphs

A weighted digraph G is a pair (VG ,EG ) where

VG is set of nodes and

EG ⊆ VG × VG is set of directed edges on |VG | nodes
(allowing loops and multiple edges).

Weight: w(i , j) for each (i , j).

A bipartite graph is a triple (VH,1,VH,2,EH) s.t.

i ∈ VH,1 ⇔ j ∈ VH,2 for every (i , j) ∈ EH , weighted: w(i , j)
for each (i , j).
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Associated digraphs

Matrix M ∈ Rn×n
max −→ weighted digraph GM = (V ,E ),

where V = [n] and E = {(i , j) : Mi ,j 6= 0},

and weight w(i , j) = Mi ,j .

Weighted digraph G = ([n],E ,w) −→ matrix MG ,

where (MG )i ,j =

{
w(i , j) ; if (i , j) ∈ E ,

0 ; otherwise.
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Digraphs and matrices

1 2

3

M1,1

M3,2

M1,2

M2,1

M3,1
M1,3

M1,1 M1,2 M1,3

M2,1 0 0

M3,1 M3,2 0

M = MG =

G = GM
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Associated bipartite graphs

Matrix M ∈ Rm×n
max −→bipartite graph GM = (VH1 ,VH2 ,EH),

|VH1 | = m, |VH2 | = n, and EH = {(i , j) : Mi ,j 6= −∞},

weight w(i , j) = Mi ,j .

Bipartite graph G = (VH1 ,VH2 ,EH) −→matrix MG ∈ Rm×n
max

|VH1 | = m, |VH2 | = n

where (MG )i ,j =

{
w(i , j) ; if (i , j) ∈ EH ,

0 ; otherwise.

DigraphDG = ([n],ED)←→bipartite graphBG = ([2n],EB),
s.t. (i , j + n) ∈ EB for every (i , j) ∈ ED .
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Bipartite graphs and matrices

M1,1 M1,2 M1,3

M2,1 0 0

M3,1 M3,2 0

M =

1

2

3

1 2

3
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Definitions: assignment problems

Let Sn denote the set of permutations on [n], and SI ,J denote
the set of bijections from I ⊆ [n] to J ⊆ [n] (that is, |I | = |J|).

For M ∈ Rn×n
max tropical permanent is defined by

per(M) = max
π∈Sn

∑
i∈[n]

Mi ,π(i) =
⊕
π∈Sn

⊙
i∈[n]

Mi ,π(i).

A permutation π of maximal weight in per(M) is an optimal
permutation in M or GM . That is,

per(M) =
⊙
i∈[n]

Mi ,π(i) =
∑
i∈[n]

w(i , π(i)).

This is identical to the set of optimal assignments, i.e.,
optimal solutions to the assignment problem in the bipartite
graph associated with M.
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Permutation subgraphs

A non-0 tropical ”summand” w(π) =
⊙

i∈[n] Mi ,π(i) in perM,
or in M ↔ permutation-subgraph of GM

with V (Eπ) = [n], Eπ = {(i , π(i)) ∀i ∈ [n]}.

5

3 4

6 1 2

(1 2 4)(5 3)(6)

(and the same for path, cycle, bijection,...)
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Assignment subgraphs

A non-0 tropical ”summand” w(π) =
⊙

i∈[n] Mi ,π(i) in perM
↔ assignment subgraph with
V (Eπ) = [n] + [n], Eπ = {(i , π(i)) ∀i ∈ [n]}.

1

2

3

(2 1 3)

(and the same for path, cycle, bijection,...)

Adi Niv Optimal assignments with supervisions



Basic definitions and concepts
Optimal assignments with supervisions

Tropical Jacobi identity

k-regular graphs

A graph or digraph G = (V ,E ) is k-regular if
∀v ∈ V : deg(v) = k (if G is a graph)
∀v ∈ V : deg+(v) = deg−(v) = k (if G is a digraph).

Observation: Let G = ([n],E ) be a k-regular digraph, then

E =
⊎
i∈[k]

Eρi , ρi ∈ Sn

i.e., a disjoint union of edge sets of k permutation-subgraphs
Gi = ([n],Eρi ) for some ρi , for i ∈ [k].
[Hall’s Marriage Thm and Z.Izhakian and L.Rowen, Supertropical matrix

algebra.]

So G = (
(
[n],
⊎

i∈[k] Eρi
)
.
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Hall’s Marriage Theorem

1 2

3

∼=

1

2

3

∼=

1

2

3

1

2

3

1

2

3
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(1, k)-regular graphs

Let G be k-regular (with ρ1, ..., ρk). We say G
is (1, k)-regular w.r.t. I , J with |I | = |J| = k
if there exist ei ∈ Eρi ∀i ∈ [k] s.t. s(ei ) ∈ I , t(ei ) ∈ J and(

V (Eπ),Eπ = {e1, ..., ek}
)

is a bijection-subgraph.

We denote
G =

(
[n],

⊎
i∈[k]

Eρi , π
)
.
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Example: (1,3)-regular graph

1 2
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∼=

1
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Tropical adjugate

Denote by M∧k ∈ R
(nk)×(nk)
max the tropical kth compound matrix

of M defined by

M∧kI ,J =
⊕
σ∈SI ,J

⊙
i∈I

Mi ,σ(i) = max
σ∈SI ,J

∑
i∈I

Mi ,σ(i)

∀I , J ⊆ [n] : |I | = |J| = k, I , J ordered lexicographically.

In particular, M∧1 = M, M∧0 = 1 and per(M) = M∧n is the
tropical permanent of M.

adj(M)i ,j = M∧n−1
{j}c ,{i}c

is the (i j) entry of the tropical adjugate of M.
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Optimal (1, k)-regular multigraphs

We say that
(
[n],
⊎

i∈[k] Eρi , σ
)

is an
optimal (1, k)-regular multigraph of G w.r.t. I , J if(∑

i∈[k]

w(ρi )

)
− w(σ) ≥

(∑
i∈[k]

w(ρ′i )

)
− w(σ′),

for every (1, k)-regular multigraph
(
[n],
⊎

i∈[k] Eρ′i , σ
′) of G .

Equivalently(
adj(MG )

)∧k
J,I

=
⊙
i∈I

(
adj(MG )

)
σ(i),i

, where

(
adj(MG )

)
σ(i),i

=
⊙
j∈{i}c

(MG )j ,ρi (j).
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Example: (1,3)-regular graph

1 2
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2
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2

3(∑
i∈[3]

w(ρi )

)
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Example: (1,3)-regular graph
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Example: (1,3)-regular graph
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3(∑
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w(ρi )
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Assignments with supervisions

Supervisions: Let

M ∈ Rn×n
max

ρt ∈ Sn for t ∈ [k] be k assignments,
(it , jt) ∈ I × J be k edges s.t. σ(it) = jt for σ ∈ SI ,J .

σ defines supervisions on {ρt : t ∈ [k]} if ρt(it) = jt ∀t.

The base value of these assignments with supervisions is

∑
t∈[k]

(
w(ρt ,M)−Mit ,σ(it)

)
=

k∑
t=1

∑
i 6=it

Mi ,ρt(i).

This is also the weight of (1, k)-regular multigraph
([n],

⊎
t∈[k] Eρt , σ).
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Assignments with supervisions of people {1, 3, 6} on tasks
{2, 3, 5}

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6
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Key observation

The optimal base value of k assignments with supervisions I
on J is ⊕

σ∈SJ,I

w(σ, adj(M)J,I ) = [adj(M)]∧kJ,I

It is also the the weight of an
optimal (1, k)-regular multigraph w.r.t. I and J.
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Example

Let

M =


0 1 −2 −4
−3 0 5 2
−5 4 0 6
−1 −6 3 0

 , then adj(M) =


9 10 6• 12

10 9 5• 11
5 6 2 6•

8 9 5 9

 .

Goal: Find optimal assignments with supervisions
of I = {2, 4} on J = {1, 2}.
The maximum base value is given by

adj(M)∧2
J,I = per

(
10 12
9 11

)
= 21•.

The optimal bijections (supervisions) are
σ1 = (2→ 1)(4→ 2) and σ2 = (2→ 2)(4→ 1).
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Example: the end of solution

We found that σ1 : (2→ 1)(4→ 2) is optimal.

Supervision 2→ 1 corresponds to

M{1,3,4},{2,3,4} =

 1 −2 −4
4 0 6
−6 3 0

 .

β1 = (1→ 2)(3→ 4)(4→ 3) ∈ S{1,3,4},{2,3,4},

ρ1 = (1→ 2)(2→ 1)(3→ 4)(4→ 3) ∈ S4.

For supervision 4→ 2, we similarly obtain:
β2 = (1→ 1)(2→ 3)(3→ 4) ∈ S{1,2,3},{1,3,4},
ρ2 = (1→ 1)(2→ 3)(3→ 4)(4→ 2) ∈ S4.

Optimal (1, k)-regular multigraph:
F = (Eρ1 ] Eρ2 , σ1).
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(non-symmetrized) Tropical Jacobi identity

Theorem (Tropical Jacobi identity)

Let M ∈ Rn×n
max and I , J ⊆ [n] such that |I | = |J| = k . Then:

1 [per(M)−1adj(M)]∧k
I ,J

= per(M)−1M∧n−k
Jc ,I c

OR

2 There exist distinct bijections π, σ ∈ SI ,J such that

[adj(M)]∧k
I ,J

=
∑
i∈I

adj(M)i ,π(i) =
∑
i∈I

adj(M)i ,σ(i).

[M. Akian, S. Gaubert and N, Tropical compound matrix identities, LAA.]
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Tropical adjugate and optimal multigraphs

(adjM)∧kJ,I =
the weight of an optimal (1, k)-regular multigraph
F =

(
[n],
⊎

i∈[k] Eρi , π
)

w.r.t. I , J ⊆ [n].

We will assume that Mi ,i = 1 and Id ∈ Sn is an optimal
assignment in M. That is, per(M) =

⊙
i∈[n] Mi ,i = 1.

Indeed, this normalization M 7→ PM process is invertible, so
by Binet-Cauchy and classical Jacobi, if tropical Jacobi holds
for PM, it holds for M.

This means Id ∈ Sk is an optimal assignment of weight 1
in M for every k , and in particular, loops are ‘equally or more
optimal’ than every cycle.
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Case of unicycle permutations ρi

ρi :
· · ·︸ ︷︷ ︸

loops on [n] \ V (Ci )

ei ∈ Eπ

Ci

βi : · · ·︸ ︷︷ ︸
loops on [n] \ V (Pi )

s(ei ) = t(Pi )

s(Pi ) = t(ei )

Pi

Adi Niv Optimal assignments with supervisions



Basic definitions and concepts
Optimal assignments with supervisions

Tropical Jacobi identity

Tropical Jacobi identity in multigraphs

Theorem

Let Id be an optimal permutation in G = ([n],E ).

Let F =
(
[n],
⊎

i∈[k] Eρi , π
)
be an optimal (1, k)-regular

multigraph of G with respect to I , J ⊆ [n].

EITHER:
w(F ) = w(σ) where σ ∈ SI c ,Jc is an optimal bijection,

OR:
There exists π̃ ∈ SI ,J and τi ∈ Sn s.t.
F ′ =

(
[n],
⊎

i∈[k] Eτi , π̃
)
6= F is also an optimal

(1, k)-regular multigraph with respect to I , J.
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Example

Let

A =


0 −1 −5 −4
−6 0 −2 −1
−3 −4 0 −3
−2 −7 0 0

 .

Then

adj(A) =


0 −1 −2 −2
−3 0 −1 −1
−3 −4• 0 −3
−2 −3 0 0

↔


or
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The first case

Case 1: All paths Pi for i ∈ [k] are pairwise disjoint.

Under this condition, we take
σ = composition P1 ◦ . . . ◦ Pk with disjoint loops. That is:

(a) All sources and targets of Pi are disjoint,

(b) Sources and targets are disjoint to all intermediate nodes,

(c) All intermediate nodes of Pi are disjoint.
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The first case

(1, k)−
regular

ρ1

ρ2

...

ρk

=

=

...

=

ρ1|s(e1)
c

ρ2|s(e2)
c

...

ρk |s(ek )
c

◦

◦

...

◦

Sn

∈

C1

C2

...

Ck

◦
loops

=

=

...

=

Idk−1

=

loops

loops

...

loops

◦

◦

...

◦

SI c ,Jc

∈

π′
=

P1

P2

...

Pk

◦
loops

◦

◦

...

◦

SI ,J

∈

π
=

e1

e2

...

ek

τ1 = Id

...

τk−1 = Id

τk = π′ ◦ π

Figure: Case (1): Optimal (1, k)-regular multigraph F corresponds to an
optimal permutation w.r.t. I c , Jc .Adi Niv Optimal assignments with supervisions
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Example: Case 1

A =


0 −1 −5 −4
−6 0 −2 −1
−3 −4 0 −3
−2 −7 0 0

 , adj(A) =


0 −1 −2 −2
−3 0 −1 −1
−3 −4• 0 −3
−2 −3 0 0


Case 1 in the theorem:

adj(A)∧3
{1}c ,{4}c = −2 = A4,1 = A∧1

{4},{1},
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Example: Case 1

Left: adj(A)∧3
{2,3,4},{1,2,3} is the weight of F (an optimal

(1, k)-regular multigraph).

Right: σ is the (optimal) bijection: Jc = {4} → I c = {1}.
Joined with loops and the supervision edges, it makes a
permutation.

→

(2) (3) 4→ 1
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Violation of a)

Case 2a): There exists a source which is also a target.
In this case ∃i , j ∈ [k] : t(Pj) = s(Pi ) .

s(Pj)

t(Pj) = s(Pi )

t(Pi )≤

τ
s(Pj)

composed with disjoint loops
t(Pi )
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Violation of a)

Construct F ′ = (
⊎

i∈[k] Eτi , π
′) by:

Replacing ρi , ρj −→ (τi = τ), (τj = Id),

Keeping τ` = ρ` for all ` 6= i , j ,

π̃ is formed from π by replacing
(t(Pj), s(Pj)), (t(Pi ), s(Pi )) −→ (t(Pi ), s(Pj)), (t(Pj), s(Pi )).
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Example: Case 2a

A =


0 −1 −5 −4
−6 0 −2 −1
−3 −4 0 −3
−2 −7 0 0

 , adj(A) =


0 −1 −2 −2
−3 0 −1 −1
−3 −4• 0 −3
−2 −3 0 0


Case 2a in the theorem For I = {1, 2, 3} and J = {1, 3, 4} we have

adj(A)∧3
J,I = −3• > A∧1

IC ,JC = A4,2 = −7.
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Example: Case 2a

Left is attained by two bijections in adj(A):
(3), 4→ 1→ 2 and (1)(3), 4→ 2.

These bijections represent, in A, the following choices for 3
assignments with supervisions:

and

obtained by the same set of reorganized edges:

4→ 1 1→ 2 and 4→ 1→ 2
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Violation of b)

Case 2b: There exists an intermediate node which is also a
source or a target.
Assume w.l.o.g. that Case 2a does not occur.

s(Pi )

t(Pi )
s(Pj)

t(Pj)

=

s(Pi )

t(Pi )
s(Pj)

t(Pj)≤

τ

τ ′

s(Pi )
composed with loops

t(Pj)

t(Pi ) s(Pj)
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Violation of b)

Construct F ′ = (
⊎

i∈[k] Eτi , π
′) by:

Replacing ρi , ρj −→ (τi = τ), (τj = τ ′),

Keeping τ` = ρ` for all ` 6= i , j ,

π̃ is formed from π by replacing
(t(Pj), s(Pj)), (t(Pi ), s(Pi ) −→ (t(Pi ), s(Pj)), (t(Pj), s(Pi )).
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Example: Case 2b

A =


0 −1 −5 −4
−6 0 −2 −1
−3 −4 0 −3
−2 −7 0 0

 , adj(A) =


0 −1 −2 −2
−3 0 −1 −1
−3 −4• 0 −3
−2 −3 0 0


Case 2b in the theorem For I = {1, 2} and J = {3, 4} we have:

adj(A)∧2
J,I = −6• = (adj(A)3,1adj(A)4,2)⊕ (adj(A)3,2adj(A)4,1),

A∧2
IC ,JC = −6 = A3,2A4,1.
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Example: Case 2b

In this case adj(A)∧2
J,I is attained twice AND equality holds in

the tropical Jacobi identity.

There are three sets of 2 assignments obtaining the optimal
base value:

and and

The first two are obtained by the same set of reorganized edges:

3→ 1 4→ 1→ 2 and 4→ 1 3→ 1→ 2

The third is case1 - disjoint paths: 3→ 2 4→ 1 obtaining A∧2
IC ,JC

.
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Violation of c)

Case 2c): There exists an intermediate node common to two
paths. Assume w.l.o.g. that Cases 2a,2b do not occur.

s(Pi )

s(Pj)
t(Pi )

t

t(Pj)

=

s(Pi )

s(Pj) t(Pi )

t

t(Pj)

≤

τ

τ ′

s(Pi )

composed with loops

t(Pj)

s(Pj) t(Pi )
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Violation of c)

Construct F ′ = (
⊎

i∈[k] Eτi , π
′) by:

Replacing ρi , ρj −→ (τi = τ), (τj = τ ′),

Keeping τ` = ρ` for all ` 6= i , j ,

π̃ is formed from π by replacing
(t(Pj), s(Pj)), (t(Pi ), s(Pi ) −→ (t(Pi ), s(Pj)), (t(Pj), s(Pi )).
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Example: Case 2C

(4) (5) 1→ 2→ 3 , (1) (3) 4→ 2→ 5

with the bijection 3→ 1 , 5→ 4, becomes

(3) (4) 1→ 2→ 5 , (1) (5) 4→ 2→ 3

with the bijection 5→ 1 , 3→ 4:
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Supervised assignment optimization

Monday Tuesday Wednesday Thursday
1. Work schedule 2. Lunch 3. Tips
4. Carpool 5. Inventory 6. Leftovers
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Supervised assignment optimization

Monday Tuesday Wednesday Thursday
1. Work schedule (Monday) 2. Lunch 3. Tips (Wednesday)
4. Carpool 5. Inventory (Tuesday) 6. Leftovers (Thursday)
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Supervised assignment optimization

Monday Tuesday Wednesday Thursday
1. Work schedule (Monday) 2. Lunch 3. Tips (Wednesday)
4. Carpool 5. Inventory (Tuesday) 6. Leftovers (Thursday)
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Supervised assignment optimization

(1) 2→ 3→ 4→ 5 ∈ S{1,2,3,4},{1,3,4,5}
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Supervised assignment optimization

(1)(2)(3)(4)(5)(6) (1 2 3 4 5 6)) (2 3)(4 5)(1 6) (2 3 4)(1 6 5)
(1) 2→ 3→ 4→ 5 ∈ S{1,2,3,4},{1,3,4,5}

Adi Niv Optimal assignments with supervisions



Basic definitions and concepts
Optimal assignments with supervisions

Tropical Jacobi identity

Supervised assignment optimization

(1)(2)(3)(4)(5)(6) (1 2 3 4 5 6)) (2 3)(4 5)(1 6) (2 3 4)(1 6 5)
(1) 2→ 3→ 4→ 5 ∈ S{1,2,3,4},{1,3,4,5}
(6) 5→ 2 or 5→ 6→ 2 ∈ S{5,6},{2,6}
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Supervised assignment optimization

(6) 5→ 2 or 5→ 6→ 2 ∈ S{5,6},{2,6}
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THANK YOU!
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