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Introduction
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Spatial ecology

Predictive modelling:
– better understanding of spatio-temporal population dynamics in
various ecological systems
– development, study, and (numerical) solution of relevant
mathematical models
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Spatial ecology

Predictive modelling:
– better understanding of spatio-temporal population dynamics in
various ecological systems
– development, study, and (numerical) solution of relevant
mathematical models

Processing spatial ecological data:
– making well-informed conclusions about the ecological system of
interest

(accurate) spatial pattern reconstruction

(accurate) evaluation of ecological indices (functionals)

– validation of ecologically relevant mathematical models
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Examples of spatial data collection

A line of pitfall traps, Kongsfjord.
c©S.J. Coulson

Bat detectors, Fruska Gora National Park.
c©The Rufford Foundation
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Baseline problem: evaluation of the pest abundance

• The information about
pest population size
is obtained through
trapping

• Once the samples
(trap counts) are
collected, the total
number of the pest
animals in the field
is evaluated

The need in reliable methods to estimate the pest population size in
order to avoid unjustified pesticides application and yet to prevent pest
outbreaks.
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Evaluation of functionals
from sparse data
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Evaluation of the pest abundance from discrete data

• A functional of interest is the total pest population size (pest
abundance).

• If the density u(x , y) is known at any point (x , y) of the domain D,
the pest abundance I is given by

I =

∫∫
D

u(x , y)dxdy .

• Values ui ≡ u(xi , yi), i = 1, . . . ,N are given at the locations (xi , yi)
(grid points) only and the pest population size I is reduced to
computation of a weighted sum of the values ui

I ≈ Ia(N) =
N∑

i=1

ωiui .
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• For evaluation of the integral I ≈ Ia(N) =
N∑

i=1
ωiui ecologists use

ū ≈ 1
N

N∑
i=1

ui , so that I ≈ Ia(N) = Aū =
A
N

N∑
i=1

ui ,

where A is the area of the domain and ωi = A/N

• The evaluation error (integration error, approximation error) is

e(N) =
|I − Ia(N)|

I

• The accuracy requirement is e ≤ τ , where τ is the specified
tolerance
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Accuracy of monitoring

How reliable is our evaluation when the data are sparse?

(a) e(N) ∼ 10−2 (τ ∈ [0.3,0.5]) (b) e(N) ∼ 1.0
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Accuracy of monitoring on a coarse sampling grid

The evaluation error depends on the location of the peak with respect
to the nearest grid node on a sampling grid.
• How big is our chance to get accurate answer e ≤ τ?
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Accuracy of monitoring on a coarse sampling grid

Inaccurate measurement of the density function may occasionally give
the accurate value of the functional.

I ≈ Ia(N) = Aū =
A
N

N∑
i=1

ui = Au0

u(x)

x
x0

Au0

I(u)

u0
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Accuracy of monitoring on a coarse sampling grid

The theory states that increasing the number of points results in
better accuracy.

I ≈ Ia(N) =
A
N

N∑
i=1

ui

• What is the number N∗ of grid points to provide the accuracy
required in ecological applications?

u(x)

x

(A/n1)(2u0+u1)

I(u)

u(x)

x

(2A/n)u0

I(u)

u0
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Key questions revisited

Q1: How big is our chance to get accurate answer e ≤ τ?
Q2: What is the number N∗ of grid points on a sampling grid to
provide the accuracy required in ecological applications?

The previous analysis shows that the evaluation error is a random
variable on coarse sampling grids. Questions Q1 and Q2 are
re-formulated as

Q1: What is the probability p of the event e ≤ τ?
Q2: What is the number N∗ of grid points required to provide the
probability p(e ≤ τ) = 1?
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Theoretical study: quadratic function

u(x) = −A(x − x∗)2 + B, h = αδ,
h = 1/(N − 1) is the grid step size, δ is the peak width
p(e ≤ τ) =?

u(x)

x
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Theoretical study: quadratic function

u(x) = −A(x − x∗)2 + B, h = αδ, p(e ≤ τ) =?

α ∈ [1/2, α∗], p(e ≤ τ) = 1,

α ∈ [α∗, α1]

p(e ≤ τ) = 2γII(α) + 1− 2γIII(α) < 1, p(e ≤ τ) ∼ 1
h

α ∈ [α1, α2]

p(e ≤ τ) = 2(γII(α)− γI(α)) + 1− 2γIII(α) < 1, p(e ≤ τ) ∼ 1
h

α > α2

p(e ≤ τ) = 2(γII(α)− γI(α)) < 1, p(e ≤ τ) ∼ 1
h
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Probability curve for the quadratic function

u(x) = −A(x − x∗)2 + B,
τ = 0.25, δ = 0.06

0.2

0.4

0.6

0.8

1

p(h)

h
0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

u(x)

x

Natalia Petrovskaya Sparse and noisy data Birmingham 12th June 2019



Further examples: probability for an oscillating function

u(x) = exp(−x)sin(Ax) + B

A = 10.0, B = 2.0, τ = 0.01
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Evaluation of functionals
in the presence of noise
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Sparse data vs. noisy data

• Measurement errors are always present in the monitoring
problem.

• Most of the sampling protocols currently used for the pest control
imply that the evaluation error e is much smaller that the
measurement error.

• The theory states the approximation error is fully controllable and
therefore the measurement error is of the utmost importance.

Is this statement always true?

What is the relationship between the measurement error and the
approximation error?
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Example: using noisy data on a grid of 3 traps
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The lower and upper error bounds

The credible interval [ẽmin(N), ẽmax (N)] to which ẽ(N) belongs with
probability P(z).

ẽmin(N) =

{
0, for |I − Ia| ≤ zσĨ ,

e −
zσĨ
I
, for |I − Ia| > zσĨ ,

ẽmax (N) =



Φ−1
[
2Φ(z)− Φ

(
z + 2

|µẽ|
σẽ

)]
, for |I − Ia| ≤ zσĨ ,

Φ−1
[

Φ(z)− Φ

(
z − 2|µẽ|

σẽ

)
− Φ

(
z +

2|µẽ|
σẽ

)
+ 1
]
,

for |I − Ia| > zσĨ .
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Examples of the pest population density

The R-M model: for an intermediate value of the diffusion
coefficient d , the pattern can consist of just one or a few peaks
only.
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The mean error and the error bounds
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Examples of the pest population density

The number of ‘humps’ increases for smaller values of d resulting
in oscillations.
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The accuracy of evaluation depends on a spatial pattern of u(x)!
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The mean error and the error bounds
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Conclusions

• Standard methods of evaluation are not reliable on coarse
sampling grids. The results of evaluation should be explained from
a probabilistic viewpoint when data used for evaluation are sparse.

• The threshold number N∗ of grid points for which we have
p(N < N∗) < 1 and p(N ≥ N∗) = 1 depends on the shape of a
function (spatial pattern) monitored in the problem.

• The error in evaluation of the pest abundance from randomly
perturbed data mostly depends on the evaluation error obtained
from exact data.

• The knowledge of spatial pattern is crucial for accurate monitoring
and any information about it must be used to its fullest extent.
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THANK YOU!
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