

University of Birmingham College of Engineering and Physical Sciences School of Metallurgy and Materials

Additive manufacturing of ceramic powders and their composites for bone repair

Student: Zeinab Salary(Mona)

August 2016

Outline

Background

✓ Bone transplantation (Reasons and Methods)

✓ Features of scaffolds for bone repair

✓ Synthetic Biomaterials

✓ Fabrication techniques of scaffolds

✓ Additive manufacturing

Aims of the project

Experimental procedures

Results and discussion

Conclusions

Future Work

Background: Artificial Scaffolds (Synthetic Materials)

- Ceramics (e.g. HA and other Calcium phosphate phases [CaP])
- Polymers (e.g. PLA, collagen)
- Metals (e.g. Ti and Ti alloys e.g., Ti6Al4V, CoCr)
- Composites (e.g. PLA and HA)

scaffolds_0.jpg,qitok=VgjWtWnV.pagespeed.ic.ilUy3Na-Tv.jpg

SEM pictures of composite films

Results (FDM): DSC of PLA and HA films

HA %	∆H _f J/g	Peak	Last Trace	HA %	ΔH _f	Peak	Last Trace	Area T _g	ΔC _p	Tg
0%	42 ±2	156±2	159 ±2	0%	17 ±2	153±2	159±2	13±2	0.594	56±2
5%	36 ±2	155±2	157±2	5%	24 ±2	153±2	158±2	6±2	0.498	57±2
10%	36 ±2	158±2	161±2	10%	19 ±2	153±2	160±2	11±2	0.422	55±2
15%	42 ±2	158±2	162±2	15%	25 ±2	155±2	161±2	11±2	0.455	58±2
	DSC D firs	ata fron st run	۱.			DS S	SC Data second	from run		15

Results (SLA) : 3DP samples

16

Hydroxyapat	ite(19µm) and Formlab	photopolymer resin	
Solid Loadin (HA wt%)	g 3D printed Sample(green Bodies)		
30%	feasible to be fabricated	Was collapsed	
40%	feasible to be fabricated(after three tries)	Was collapsed	
50%	feasible to be fabricated(After seven tries)	Was collapsed	SLA 3D printed HA and CIA samples(<mark>30%</mark> Solid Loading)
60 wt %[34 vol%)	feasible to be fabricated(After ten tri es)	Was collapsed	Optimisation point
65%	Non-feasible (under investigation)	Not -Applicable	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	Ifferent solid loadi A applied in SLA Sy	ng of ystem	

Rheology studies [1pa.s-8pa.s] are printable

UNIVERSITY OF BIRMINGHAM

Results (SLM): Flowability measurement

Character	HA (0-30)µm	HA (30-50)μm
Hausner ratio	1.47>1.45	1.24<1.26
Flow character	Very poor	Fàir
Time of flowability	No-flowing	2"36
Angle of repose	53.2>46	44.3<45
Flow property	Poor must agitate	Fair-Passable (can be
		applied)

Results of flowability

	measurements	
Flow Character	Hausner Ratio	Angle of Repose
Excellent	1.00-1.11	25-30
Good	1.12-1.18	31-35
Fair	1.19-1.25	36-40
Passable	1.26-1.34	41-45
Poor	1.35-1.45	46-55
Very poor	1.46-1.59	56-65
Very, very poor	>1.60	>66

Experimental considerations for Hausner ratio

and angle of repose European Phormacopoeia. International journal of pharmaceutics

Results (SLM): -HA and CIA(30-50µm)

Parameters:

E_d=P/(s.H)

Due to the reflectivity of HA; we could not process over 120 W. 50 W, 100mm/s, 15µm hatch spacing gave a reasonably stable layer in the HA

Support structure from HA cements (Thickness:5 mm)

Future Work

- In SLA process Using a two-step debinding process (vacuum and air debinding respectively) to prevent the sample from any defect
- In FDM process, 3D shapes of pure PLA, PLA-HA, PLA-HA with different bioglasses will be produced by FDM procedure and the effect of adding the filler to the matrix in terms of degradation ,thermal stability, Biomechanical performance and cell adhesion will be investigated
- Some films of HA and PLA will be hot-pressed and characterised the results will be compared with the 3D printed samples(As reference)

Thank you

14

28

Experimental procedure

Chlorapatite (CIA) was synthesized by a hightemperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The CIA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form.

The ion exchange reaction was performed in a tubular oven under a flux of dry nitrogen enriched with sublimated NH4Cl in large excess placed in a zone of the tubular oven at about 400°C

IVERSITY OF	chanical tests	and consider bone:	ration for	human
	Longitudinal direction	Transverse direction		- 11
Tensile strength (MPa)	60-70	~50		
Compressive strength (MPa)	70-280	~50	a	▶ ₩
Young's Modulus, E (GPa)	11-21	5-13	- Compressive	Tensile
If the implant is then the remaini the implant will t increased stress. bone, then a phe stress shielding y	not as stiff as bor ng bone surround be put under If it is stiffer that nomenon known will occur.	IE, Ing http://www.paroccont/snowh stability/medi/mages/know 3241386.ashx n as	ow/methanical- vhow//Methanicals/205iability/Illustr www.doitpoms.ac.ul/tiplib/bones/bor	ations%20EN/Mečhanical-
the implant is m implant will bear shielded from mu femur, the body osteoclast activit	uch stiffer than the more of the load uch of the stress to will respond to thi y, causing bone re	ne bone, then the Because the bo being applied to t s by increasing esorption.	e ne is he bon	ak down Ie tissue ³¹

Flowability measurement(tapped density):

The tapped density is obtained by mechanically tapping a graduated measuring cylinder or vessel containing the powder sample. After observing the initial powder volume or mass, the measuring cylinder or vessel is mechanically tapped, and volume or mass readings are taken until little further volume or mass change is observed. The mechanical tapping is achieved by raising the cylinder or vessel and allowing it to drop, under its own mass.

17

(1) Le Guehennec L. et al. Dental materials, 23³(2007)

Osseointegration refers to a direct structural and functional connection between ordered; living bone and the surface of a load-carrying implant: Currently, an implant is considered as osseointegrated when there is no progressive relative movement between the implant and the bone with which it has direct contact. HA can improve Osseointegration of metal implants

A major factor that determines the success of dental implantation is osseointegration, which is the stable anchorage of an implant in living bone achieved by direct bone-to-implant contacts

Major aspects of the implant's surface characteristics include, but not limited to, surface morphology, surface chemistry, and surface energy, which significantly affect the initial bone cells' response to the implant at the boneimplant interphase coating, for example, with hydroxyapatite (HA), $Ca_{10}(PO_4)_6(OH)_2$, to improve the implant's bioactivity. Although the presence of relatively soluble non-apatitic calcium phosphate salts such as ACP, TCP, and TTCP has been found to accelerate the bone attachment, these phases are related to long-term non-uniform coating degradations that adversely affect the prosthetic stability of the implants

Parameter							
Laser power-P	Hatch distance(H)						
(W)	S (mm/s)	(mm)					
50-60-120-240-	7000-2000-500-	0.0795					
400	300-100						
	Parameters of SLM first try	A.					

E _d =P/(s.H)					ł		÷			ł
	Parameter		•]		÷		4		÷.	ł
Laser power-P	Scanning velocity-	Hatch distance(H)	•	•	÷	÷	Ŀ.	• •	÷	1
(W)	S (mm/s)	(mm)	÷	÷	Ŀ.	÷	÷	-	÷.	•
50-60- 100-	50-75-100-150-	0.15	Ŀ.	÷	÷	÷	Н	÷	÷	ŀ
170-200	200		- 1	÷	Ŀ	2	÷		H.	÷
	Parameters of SLN Second try	Л								
			4	÷	1.	1	÷.)-	1.1	147	đ
			÷,	÷	÷		÷			j

Results and discussion :Characterization-SLA 3D Samples (Green Bodies)

SLA 3D printed **HA** and **CIA** samples(30% Solid Loading)

Hydroxyapatite(26µm) and Formlab photopolymer resin							
Solid Loading (HA %)		Sintering Process					
30%	feasible to be fabricated	Was collapsed					
40%	feasible to be fabricated(afte r three tries)	Was collapsed					
50%	feasible to be fabricated(Afte r seven tries)	Was collapsed					
60%	Non-feasible (under investigation)	Not - Applicable					
E	Different solid loading of						

HA applied in SLA System

Chapters of Thesis

- Chapter 1: Literature review
- 1. Bone and scaffold
- 2. Different Biomaterials which could be used
- 3. Conventional methods of making scaffold
- 4. 3D printing
- Chapter 2: Fully characterisation and mechanical tests PLA-PLA-HA composite Films)-Hot pressed samples
- Chapter 3: Fully characterisation and mechanical tests of 3D printed PLA-HA samples
- Chapter 4: Fully characterisation and mechanical tests of 3D printed lanthanum glasses-HA PLA or another filler (Novelty)
- Chapter 5:SLM-SLA
- Chapter 6:comparison --conclusion-Future work

