UNIVERSITY^{OF} BIRMINGHAM

Stuart Hillmansen University of Birmingham

Sustainable traction drives

What is new in Traction?

- Physics of traction no change there!
- Traction drives lots of legacy stuff around
- Railway energy consumption lots of concern about how to save energy
- Some new concepts for future traction
- Summary

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 2

Overview of energy and power

- Linear motion of a railway vehicle can be described using standard equations of motion derived from Newton's Laws
- Force = Mass x Acceleration (Newton)
- Work Done = Force x distance (Joule)
- Power = Work Done / time (Watt)

Slide No: 3

UNIVERSITY^{OF} BIRMINGHAM

Sustainable traction drives

What is a Newton, a Joule or a Watt?

If we lift the apple through 1 metre in 1 second then the power is: P=WD / time = 1 Watt

If we lift the apple up through 1 metre then the work done will be: WD=F x d = 1 Newton x 1 Metre = 1 Joule

F=M x a = 0.1 kg x 10 m/s^2= 1 Newton

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 4

UNIVERSITYOF

BIRMINGHAM

So...

- A kettle boiling water is equivalent to 3,000 apples being lifted vertically at a speed of 1 m/s
- A Eurostar train at full power is equivalent to 12 million apples being lifted vertically as a speed of 1 m/s

$$M(1+\lambda)\frac{d^2s}{dt^2} = T - \left(c\left(\frac{ds}{dt}\right)^2 + b\left(\frac{ds}{dt}\right) + a + \frac{d}{r}\right) - \left(Mg\theta\right)$$

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 6

Slide No: 5

Tractive and resistive forces

Sustainable traction drives

Summary of traction

- Overall tractive effort is limited by number of driven wheels and maximum torque of the traction motors
- Once the constant power region is reached then the tractive effort drops off with 1/speed
- Possible to achieve good performance with low power and with distributed traction
- Distributed traction also improves regeneration potential

Slide No: 8

Traction energy overview

- Energy in at pantograph
 - Auxiliary
 - Traction
 - Losses in:
 - -Converters
 - -Motors
 - -Resistance to motion slow trains down?
 - Kinetic energy recovery (last low hanging fruit)

Slide No: 9

UNIVERSITY^{OF} BIRMINGHAM

Sustainable traction drives

Options for energy storage 1

- Onboard storage
 - Diesel electric multiple units
 - Diesel multiple units
 - Locomotives
 - Shunting locomotives
 - Electric multiple units

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 10

Options for energy storage 2

- Wayside storage (fixed installations)
 - DC railways
 - Load levelling
 - Regeneration capture and reuse
 - AC railways not such an important issue

Slide No: 11

BIRMINGHAM

UNIVERSITY^{OF} BIRMINGHAM

Page 6

Slide No: 14

BIRMINGHAM

Important features of braking

- At high speed it is very difficult (impossible) to capture all the braking energy.
- Constant power braking is required to get the most out of regenerating systems
- Using constant power and all electric regeneration will lead to longer journey times unless you put big machines in the train

Slide No: 15

UNIVERSITYOF BIRMINGHAM

Sustainable traction drives

Energy Storage Capability (in MJ/kg)

 Compressed natural gas (CNG): – But pressure vessel weighs a lot 	50 MJ/kg
• Petrol:	44 MJ/kg
• Diesel fuel:	39-42 MJ/kg
• Ethanol:	30 MJ/kg
• Coal:	29 MJ/kg
• Biomass:	15 MJ/kg
• Liquid petroleum gas (LPG):	45-50 MJ/kg
• Steel flywheel:	0.014 MJ/kg
• Battery:	0.01-0.56 MJ/kg
ide No: 16	UNIVERSITY ^{of} BIRMINGHAM

Slide No: 16

Slide No: 17

UNIVERSITY^{OF} BIRMINGHAM

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 18

Slide No: 19

UNIVERSITY^{OF} BIRMINGHAM

Sustainable traction drives

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 20

Hayabusa

- Developed by Hitachi, Porterbrook, Brush Traction, and Network Rail.
- Class 43 fitted with 4 Hitachi 300 kW AC traction motors.
- Hitachi lithium-Ion batteries used as the ESD

- 48 batteries, 960 kg battery weight

- Capacity: 48 kWh
- Maximum power output: 1 MW for 170 seconds

Hayabusa series hybrid scheme UNIVERSITYOF BIRMINGHAM

Slide No: 22

EMUs with energy storage

- Provides power in the event of supply failure
- Can improve energy efficiency on DC railways (with long headways and low voltage DC supplies)
- Can power train on sections of track which are not electrified
- No commercial main line trains are currently available - but there are some light rail examples
- IPEMU trial

Slide No: 23

UNIVERSITY^{OF} BIRMINGHAM

http://www.railtechnologymagazine.com/R ail-News/prototype-battery-poweredipemu-carries-passengers-for-first-time

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 24

ULEV-TAP2 (Flywheel)

Bombardier (Ultracap)

 Taken from Professor Rod Smith, Imperial College London, -IMechE December 2008
 Slide No: 25

UNIVERSITY^{OF} BIRMINGHAM

Sustainable traction drives

Wayside energy storage

- Essentially same principles apply:
 - Need to consider the supply duty cycle
 - Careful positioning of equipment
 - Range of storage technologies to consider
 - Capacitor
 - Battery
 - Flywheel
 - Can lead to energy savings but these are harder to realise in an electric railway – and the economic case is not there yet.

Slide No: 26

UNIVERSITY^{OF} BIRMINGHAM

Verification Test of Energy Storage System for DC 750V Electrified Railway

Takeshi Konishi^{*}, Shin-ichi Hase^{*}, Yoshinobu Nakamichi^{*}, Hidetaka Nara^{**}, Tadashi Uemura^{**}

RTS 2007 (The Third International Conference on Railway Traction Systems), Tokyo, Japan

Slide No: 27

Sustainable traction drives

UNIVERSITYOF

BIRMINGHAM

Fig. 2. Main circuit.

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 28

Single train trajectory optimisation -BJMTR case-study-

Real train trajectory		Train trajectory optimisation				Train trajectory optimisation + Journey time disturbance optimisation				
ATO system		Huma	Human system A		ATO driving system		Human system		ATO driving system	
Journey time (s)	Energy usage (kWh)	Journey time (s)	Energy usage (kWh)	r.	Energy usage (kWh)	Journey time (s)	Energy usage (kWh)	Journey time (s)	Energy usage (kWh)	
1630	380.6	1630	310.8 (-18%)	1630	308.8 (-19%)	1630	304.3 (-20%)	1630	304.5 (-20%)	

Sustainable traction drives

Beijing Yizhuang Metro Line field test

Slide No: 31

Sustainable traction drives

Power electronic substations

UNIVERSITYOF BIRMINGHAM

Slide No: 32

UNIVERSITYOF BIRMINGHAM

Slid

Sustainable traction drives

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 34

And for where we don't electrify we have the option of fuel cell trains

- Benefits of electrification without OLE
- Zero emissions at point of use
- Lots of ways of making the H₂

UNIVERSITY^{OF} BIRMINGHAM

Slide No: 35

Sustainable traction drives

Summary

- Railway traction is fundamentally sustainable
- Kinetic energy recovery can improve overall energy efficiency
- Energy storage solutions are being trialled in many different railway applications
- The economic case is still a bit uncertain
- The performance of energy storage is likely to improve and we are likely to see wide scale implementation of these systems in the future
- Duty cycle is the most important factor to consider when thinking about energy storage devices
- Power electronic traction substations have the possibility to revolutionise the railway power system and be a key part of the smart railway power grid

Slide No: 36

UNIVERSITY^{OF} BIRMINGHAM