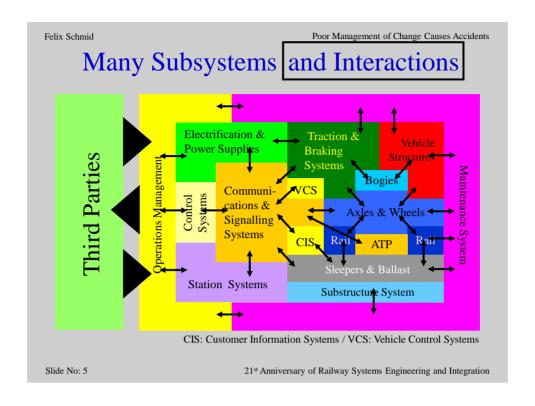
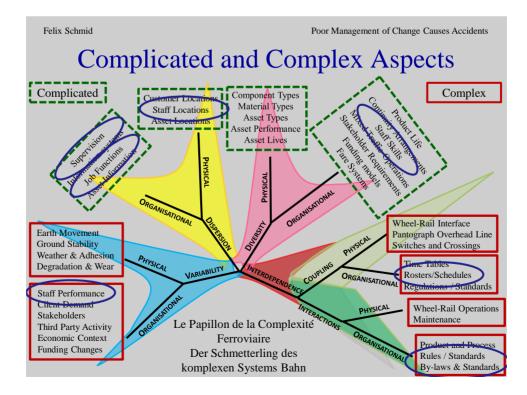


Human Factors, Systems and Safety

Felix Schmid, PhD, FIMechE, FIRSE Professor of Railway Systems Engineering University of Birmingham

Poor Management of Change Causes Accidents


Overview of Presentation


- Different views of railway systems;
- Railway subsystems, interfaces and interactions;
- Railway complexity, complication and people;
- What are human factors? What is ergonomics?
- Why do we need ergonomics?
- Ergonomics in the railway industry;
- Some railway operations examples;
- Recent major railway accidents;
- Where are the REAL failures?

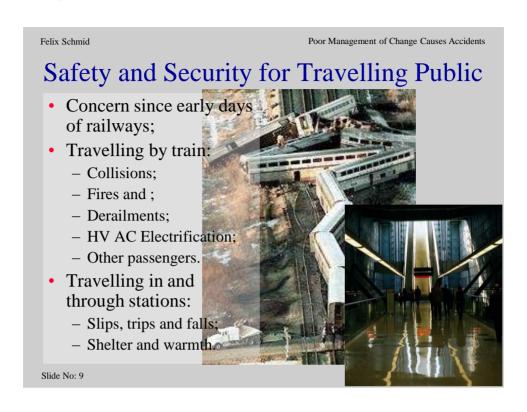
Slide No: 3

UNIVERSITY OF BIRMINGHAM

Complication and Complexity result in Railway Safety Risk

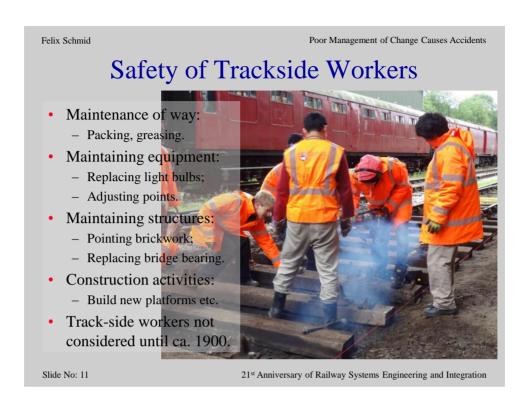
Types of Railway Risks and Parties Involved

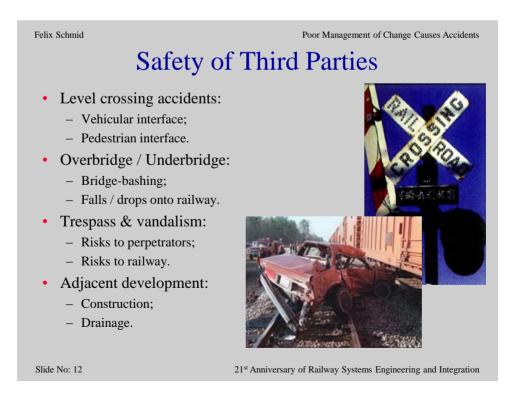
Felix Schmid

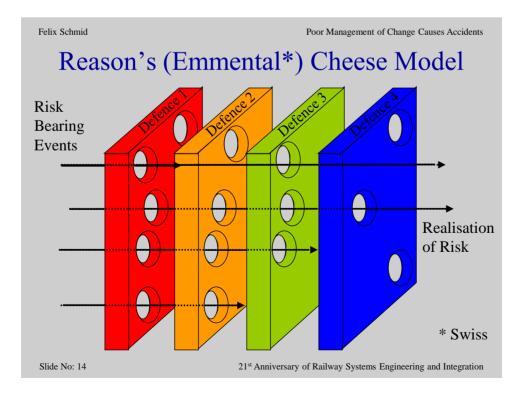

Poor Management of Change Causes Accidents


Types of Railway Risk

- Technical Safety Risk:
 - Train component failure;
 - Track component failure;
 - Signalling system failure.
- Operational Safety Risk:
 - Poor timetabling;
 - Human performance;
 - Maintenance quality.
- Societal Safety Risk:
 - Behavioural changes;
 - Poor change awareness.


- Financial Risk:
 - Budget overrun;
 - Compensation demand;
 - Company failure.
- Project Risk:
 - Time overrun;
 - Technology failure;
 - Performance risk.
- Security Risk:
 - Malicious acts;
 - Cyber technology issues.


Slide No: 8



Poor Management of Change Causes Accidents

Defences against Risks

- Introduction of technical assist and intervention systems:
 - Redundancy and diversity.
- Better planning and scheduling:
 - Remove in-built conflicts.
- Rules and regulations:
 - Proscribe and prescribe.
- Management;
- Supervision and control;
- Laws and deterrents;
- Training and education:
 - Competency management and assessment.
- Automation (get rid of fallible human being).

Slide No: 13

People create Hazards and prevent Accidents

Human Factors / Ergonomics

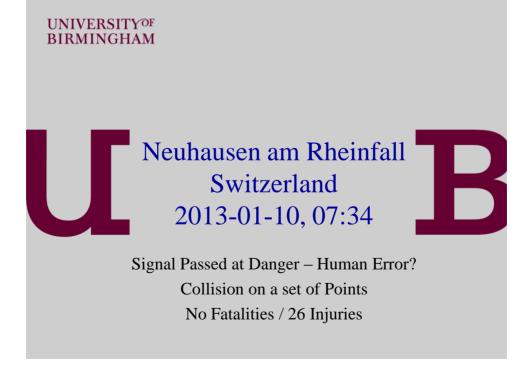
Felix Schmid

Poor Management of Change Causes Accidents

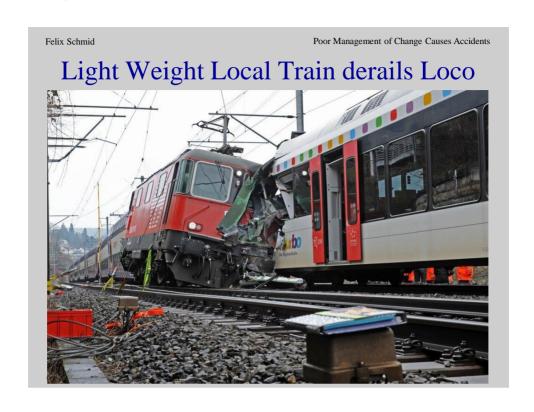
Traditional Perception of Human Error

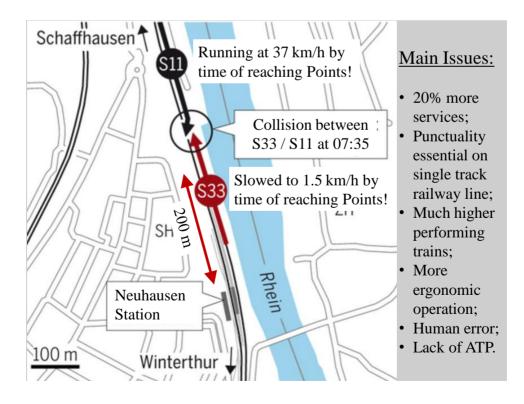
- Negligence;
- Lack of commitment;
- Failure to follow rules or procedures.

From this perspective, people could avoid making errors by choosing to behave 'correctly'...


Too simplistic - we're only human, and we can all fail, in predictable ways!

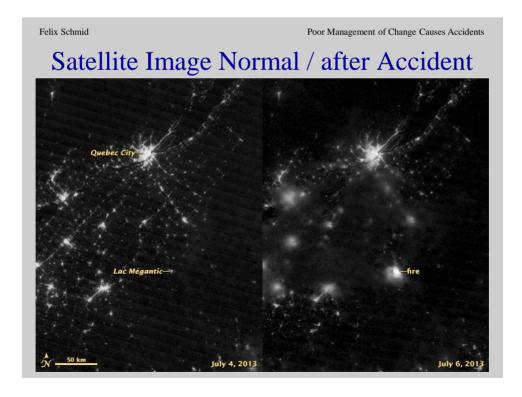
How likely we are to fail is "shaped" by ...

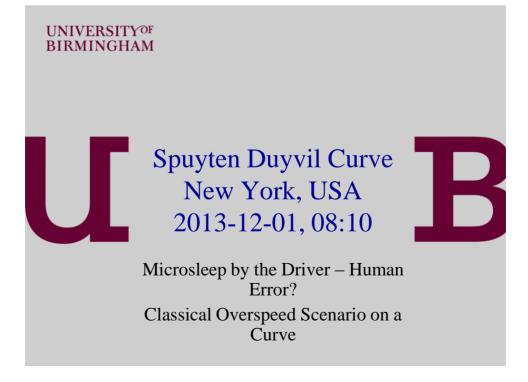

Slide No: 16

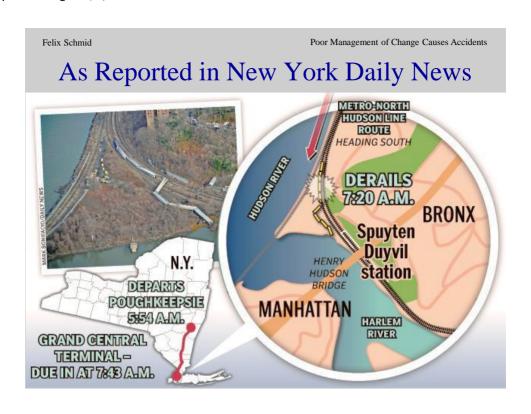


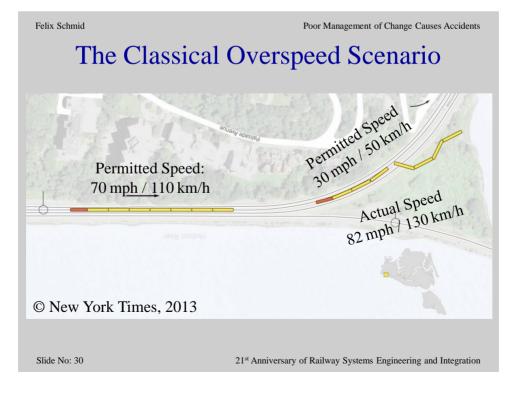
Felix Schmid Poor Management of Change Causes Accidents **Performance Shaping Factors** Personal / Individual Factors Job Factors Competence (training, experience, skills, Equipment (compatibility, usability, design, layout) knowledge) Task Demands & Characteristics (perceptual load, Stress / Personality (fatigue, time pressure) frequency, workload etc.) Physical Ability / Co-ordination (drugs, alcohol) • Shift Patterns Risk Perception Communication Attitudes and Motivation Environment (workspace, lighting, vibration etc.) Organisation and Management Factors Procedures and Standards (ease of use, design, accuracy and relevance of context, format) Communication Rewards / Punishment Systems [HSE publication HSG 48 (Reducing Roles and Responsibilities, "culture" Error and Influencing Behaviour)] Slide No: 17 21st Anniversary of Railway Systems Engineering and Integration

elix Schmid			Poor Management of C	Change Causes Acciden
Causal	Analys	sis of re	cent Acc	idents
Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Neuhausen, CH	Better Train Performance	SPAD (1.2 km/h)	No Speed Supervision	We are the best in the World
Lac Mégantic, CA				
Brétigny-sur-Orge				
Santiago de Comp				
Granges-Marnand				
New York, USA				
Casselton, USA				
Slide No: 22		21st Anniversary	of Railway Systems En	gineering and Integratio









Pelix Schmid			Poor Management of C	Change Causes Acciden
Causal	Analys	is of rec	cent Acc	idents
Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Neuhausen, CH	Better Train Performance	SPAD (1.5 km/h)	No Speed Supervision	We are the best of the World
Lac Mégantic, CA	New Flows of New Fuels	Train Not Secured	Poorly Main- tained Locos	Cost Cutting & Negligence
Brétigny-sur-Orge				
Santiago de Comp				
Granges-Marnand				
New York, USA				
Casselton, USA				
Slide No: 27		21st Anniversary	of Railway Systems Eng	gineering and Integration

Causal	Analys	is of red	cent Acc	idents
Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Neuhausen, CH	Better Train Performance	SPAD (1.5 km/h)	No Speed Supervision	We are the best in the World
Lac Mégantic, CA	New Flows of New Fuels	Train Not Secured	Poorly Main- tained Locos	Cost Cutting & Negligence
Brétigny-sur-Orge	Focus on LGV Higher Speeds	Dislodged Fishplate	Inadequate Supervision	Lack of Interest
Santiago de Comp	ATP off, no trainstop	Driver error Overspeed	Hasty start of new services	Reliance on human beings
Granges-Marnand	New services, peak time only	SPAD (50 km/h)	No ATP, train stop site wrong	Minor routes not enhanced
New York, USA	No vigilance device in cab	Microsleep Overspeed	No ATP, no speed traps	Politically focused
Casselton, USA				

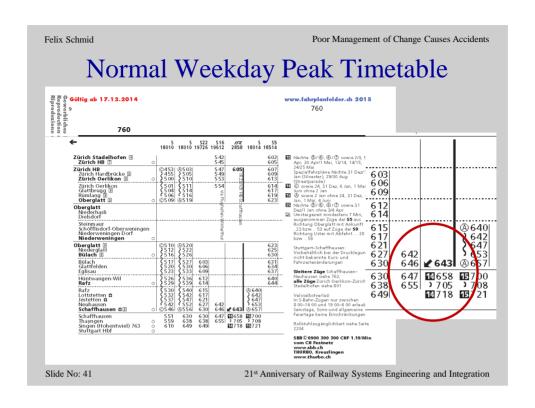
UNIVERSITY^{OF} BIRMINGHAM

Casselton Collision North Dakota, USA 2013-12-30, 14:00

Derailment of 112 Wagon Soy Bean Train 106 wagon shale-oil train collides with wreckage and results in 21 wagons burning for a day. Casselton had to be evacuated but no casualties.

elix Schmid Causal	Poor Management of Change Causes Accidents 1 Analysis of recent Accidents			
Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Neuhausen, CH	Better Train Performance	SPAD (1.5 km/h)	No Speed Supervision	We are the best in the World
Lac Mégantic, CA	New Flows of New Fuels	Train Not Secured	Poorly Maintained Locos	Cost Cutting & Negligence
Brétigny-sur-Orge	Focus on LGV Higher Speeds	Dislodged Fishplate	Inadequate Supervision	Lack of Interest
Santiago de Comp	ATP off, no trainstop	Driver error Overspeed	Hasty start of new services	Reliance on human beings
Granges-Marnand	New services, peak time only	SPAD (50 km/h)	No ATP, train stop site wrong	Minor routes not enhanced
New York, USA	No vigilance device in cab	Microsleep Overspeed	No ATP, no speed traps	Politically focused
Casselton, USA	Huge growth in oil flows	Poor track maintenance	New type of fuel oil, wagons	Undercutting of competition
Slide No: 39	in on nows		of Railway Systems Eng	•

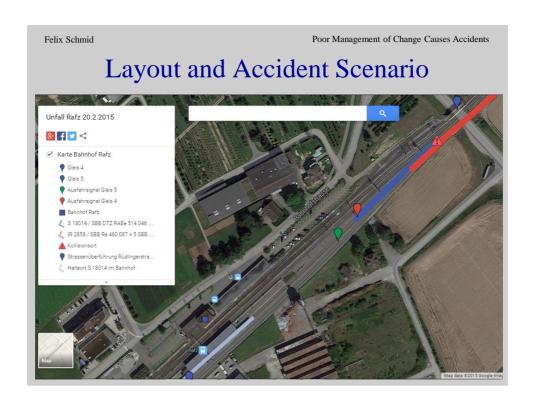
Accident at Rafz Station in Switzerland 2015-02-20 06:41

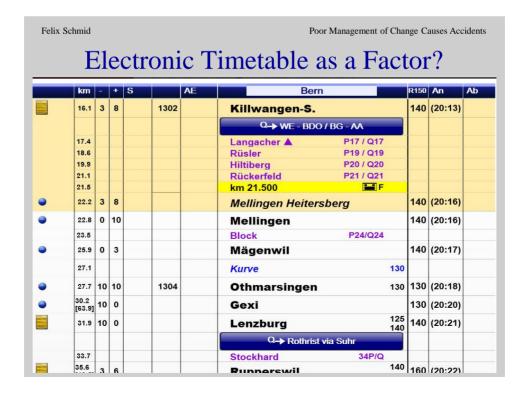


Signal Passed at Danger – Human Error?

Collision on a set of Points

No Fatalities / 6 Injuries of which 1 Serious


Poor Management of Change Causes Accidents


Accident Timeline

- Line from Rafz to Neuhausen is single track;
- IR 2858 is timetabled to pass Rafz at ca. 06:31:
 - Non-stop Inter-Regional Zürich to Schaffhausen.
- S 18014 peak hours train starts day in Rafz:
 - Mo-Fr only, normal departure 06:40;
 - Arrived ECS (empty coaching stock) from North.
- IR 2858 is running 10 minutes late;
- S 18014 leaves platform on time at 06:40;
- IR 2858 hits S 18014 on points leaving station.

Slide No: 44

Poor Management of Change Causes Accidents

Observations about Rafz Accident

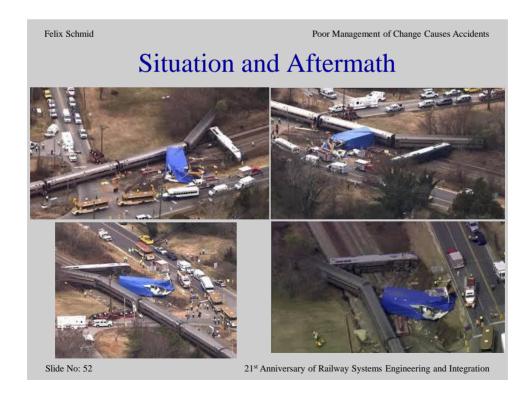
- Both trains had two drivers:
 - Instructor plus trainee;
 - Instructor and trainee discussion may have diverted attention.
- Only one train a day starts journey in Rafz;
- Block entry signal (beyond last point) may show green, even though starter is red;
- Electronic timetable may have led drivers to start 'on-time':
 - Is there a live update about delays?

Slide No: 47

Felix Schmid			Poor Management of C	hange Causes Accident
Causal	sal Analysis of recent Accidents			
Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Bintaro Level X	Overall Traffic Growth	Truck on Level Crossing	No CCTV LC Supervision	People are unimportant
Collision at Rafz	Train Power Increases	SPAD by Trainee Driver	Difference in Timetable	We are still best in World
Slide No: 48		21st Anniversary of	of Railway Systems Eng	gineering and Integration

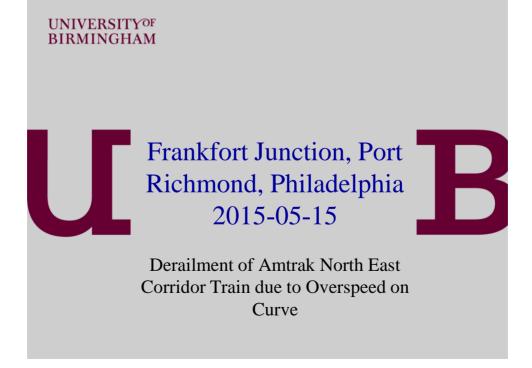
Halifax, North Carolina 2015-03-09

Collision of Amtrak North East Corridor Train with Truck on Level Crossing



Poor Management of Change Causes Accidents

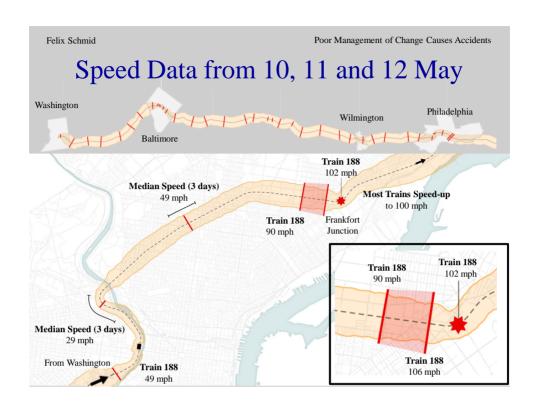
Level Crossing Incidents are High Risk

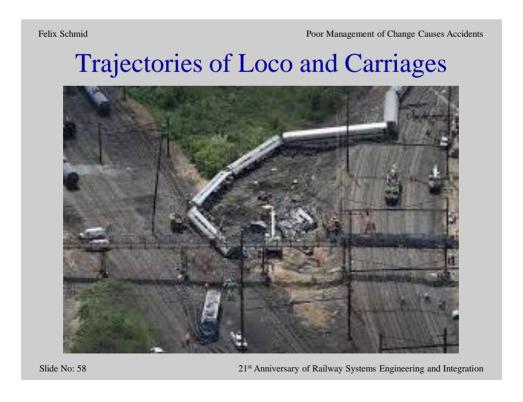

- 55 people injured but no fatalities;
- Truck carried mobile equipment building;
- Truck was accompanied by state trooper to deal with highway / road traffic issues;
- Difficult turn into main road truck stalled on level crossing for 20 minutes before crash;
- Poor instructions for level crossing users;
- Similar incident with a bacon truck on 5 June 2015 near Wilmington, no casualties.

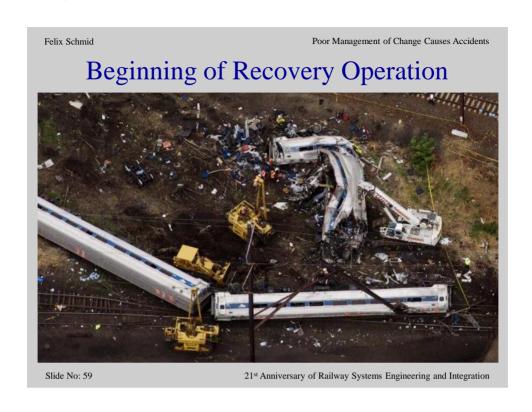
Slide No: 51

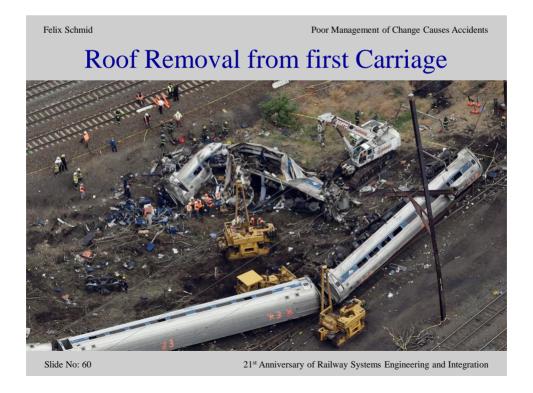


Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Bintaro Level X	Overall Traffic Growth	Truck on Level Crossing	No CCTV LC Supervision	People are unimportant
Collision at Rafz	Train Power Increases	SPAD by Driver	Difference in Timetable	We are still best in World
West Virginia Train Derailment	Huge growth in oil flows	Poor track maintenance	Out of date wagons in use	Undercutting of competition
Halifax Level Crossing Collision	Growing Road Vehicle size	Truck on Level Crossing 20'	No CCTV LC Supervision	Instructions for police incorrect









Poor Management of Change Causes Accidents

Consequences and Theories

- 238 staff and 5 crew on board;
- Locomotive stayed upright;
- 8 deaths and 200 injured, of which 11 seriously;
- Driver behaviour normal before accident:
- Report of damage to locomotive windscreen;
- Mobile phone records of driver being investigated;
- PTC installed on track and train but not in use;
- Legacy ATC (=ATP) system allowed overspeed;
- FRA now actively reviewing PTC implementation.

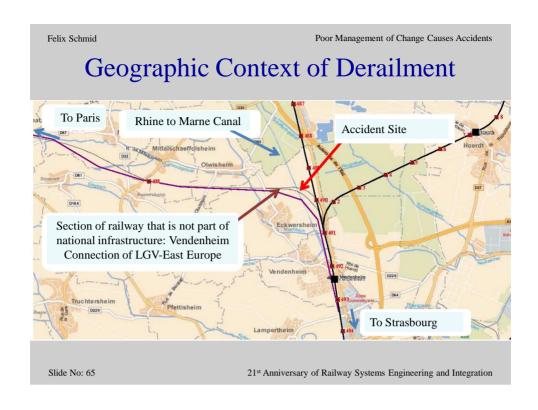
Slide No: 61

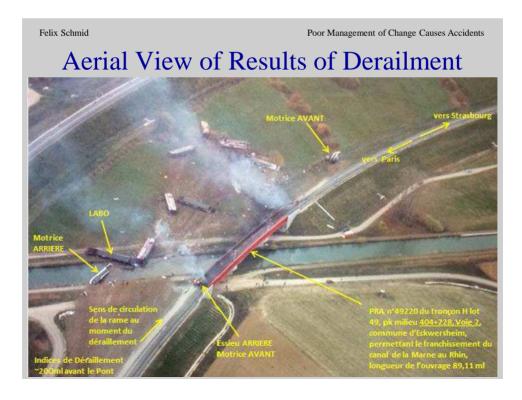
Causal Analysis of recent Accidents				Ü
Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Bintaro Level X	Overall Traffic Growth	Truck on Level Crossing	No CCTV LC Supervision	People are unimportant
Collision at Rafz nr. Zürich, CH	Train Power Increases	SPAD by Driver	Difference in Timetable	We are still best in World
West Virginia Train Derailment	Huge growth in oil flows	Poor track maintenance	Out of date wagons in use	Undercutting of competition
Halifax Level Crossing Collision	Growing road vehicle size	Truck on Level Crossing 20'	No CCTV LC Supervision	Instructions for police incorrect
Philadelphia High Speed Derailment	Complexity of Driving Task	Driver Mistake	PTC not yet Operational	Budget cuts & radio spectrum
Slide No: 62		21st Anniversary of	of Railway Systems Eng	ineering and Integratio

Eckwersheim, High Speed Train Derailment 2015-11-14, 15:10

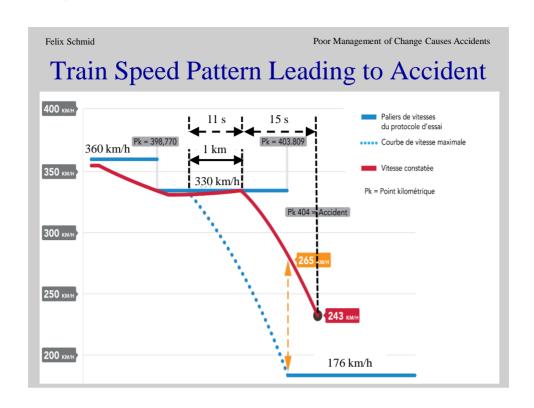
Derailment of LGV-Est Test Train due to Overspeed on Curve

Felix Schmid

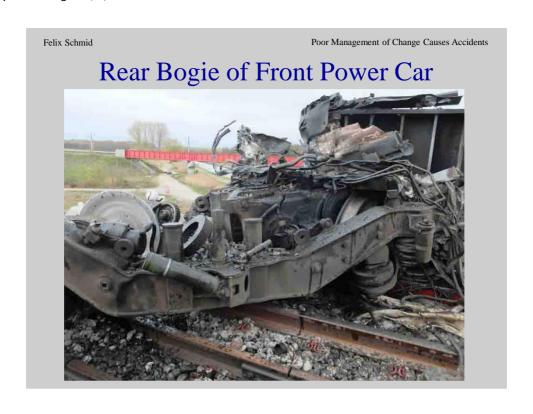

Poor Management of Change Causes Accidents


Derailment due to Overspeed

- Test train on the Ligne à Grande Vitesse (LGV) Est from Beaudrecourt to Vendenheim derails on curve that connects phase 2 of LGV-Est to classic network;
- Last of 200 test runs at a 10% over-speed to assess ride quality and stability;
- 53 people were on board, 49 test personnel and colleagues as well as 4 children:
- 11 people are killed and 42 injured, of which 4 in a life threatening state;
- 7 people were in the cab at the time of the accident: driver, second driver, traction inspector, engineer from SYSTRA and 3 others;
- Traction inspector took a mobile phone call at time where braking was due to start;
- Statement from SNCF: We shall punish responsible people!


Slide No: 64





Accident	Change not understood?	Immediate Cause(s)	Contributory Cause(s)	Management Failure(s)
Bintaro Level X	Overall Traffic Growth	Truck on Level Crossing	No CCTV LC Supervision	People are unimportant
Collision at Rafz nr. Zürich, CH	Train Power Increases	SPAD by Driver	Difference in Timetable	We are still best in World
West Virginia Train Derailment	Huge growth in oil flows	Poor track maintenance	Out of date wagons in use	Undercutting of competition
Halifax Level Crossing Collision	Growing road vehicle size	Truck on Level Crossing 20'	No CCTV LC Supervision	Instructions for police incorrect
Philadelphia High Speed Derailment	Complexity of Driving Task	Driver Mistake	PTC not yet Operational	Budget cuts & radio spectrum
Eckwersheim, Train Derailment	Increased speed of Tests	Driver Mistake	ATP not Operational	Complacency, we are the best.
Train Derailment	speed of Tests		Operational	we are the best.

elix Schmid			Poor Management of Ch	nange Causes Accide
Overall	Causal	Analysi	is of Acc	eidents
Accident	Human Error	Regulatory Failure	Finance Issue	Automation Issue
Neuhausen, CH	X		X	X
Lac Mégantic, CA	X	X	X	
Brétigny-sur-Orge	X		X	
Santiago de Comp	X		X	X
Granges-Marnand	X	X		X
New York, USA	X	X		X
Casselton, USA		X	X	
Bintaro LC	X	X		
Collision at Rafz	X	X	X	X
West Virginia		X	X	
Halifax Collision	X	X	X	X
Philadelphia	X	X	X	X
Eckwersheim	X	X		

21st Anniversary of Railway Systems Engineering and Integration

Slide No: 71

General Lessons from Railway Accidents

Human beings at all levels are fallible; Accidents are rarely caused by a single mistake; Alignment of errors and failures creates precondition;

Early risk assessment can mitigate outcome.

Poor Management of Change Causes Accidents

Railway Transport is a total 'System'

- System includes both people and machines;
 - People in the system include users and staff;
 - Machines in the system include amplifiers of human strength and information handling.
- Machines are often software based:
 - Can change behaviour quickly.
- Railways are joint cognitive systems:
 - Systems that require much Human-Machine interactions so as to produce a coherent product. (Erik Hollnagel et al., 2005)
- The railway is a socio-technical system.
 - (Wilson et al., 2007)

Slide No: 73

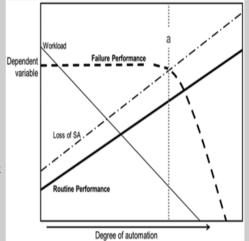
21st Anniversary of Railway Systems Engineering and Integration

Felix Schmid

Poor Management of Change Causes Accidents

Socio-Technical Systems Thinking

- Cherns (1976, 1987) principles of socio-technical design, e.g.:
 - Compatibility;
 - Information flow;
 - Power and authority.
- Social factors, e.g.:
 - Personnel:
 - Interactions;
 - Training.
- Technical factors, e.g.:
 - Technologies;
 - Materials:
 - Standardisations.
- Automation to manage growing complication & complexity.


Slide No: 74

Poor Management of Change Causes Accidents

Automation and System Performance

- Onnasch et al. (2014)
 propose a 'degree of
 automation' variable to
 explain trade-offs in humanmachine relationships;
- With any increase in degree of automation:
 - Routine performance improves;
 - Performance in failure scenarios declines:
 - Workload from automated task reduces progressively;
 - Loss of Situational Awareness (SA) grows steadily: as automation is doing more cognitive / physical work, the human is doing less.

Slide No: 75

21st Anniversary of Railway Systems Engineering and Integration

Felix Schmid

Poor Management of Change Causes Accidents

Ergonomics in Railway Operations

- Increasing emphasis on improving rail safety, but with pressure to improve business performance:
 - Higher speeds and higher performance trains;
 - Increasing traffic reduces time / space between trains;
 - Tilting trains and other advanced systems.
- New human interface and performance issues arise from new systems:
 - Human aspects of train control & signalling systems, Automatic Train Protection systems etc. need to be assessed.
- Increasing traffic levels and need for reliability.

Slide No: 76

Poor Management of Change Causes Accidents

Railway Human Factors are Challenging

- · Large numbers of very distributed staff;
- Complex and legally binding hierarchies;
- Many monotonous jobs;
- Antisocial hours work;
- Dangerous work places;
- High levels of responsibility, little authority;
- Need for high reliability organisations;
- Regulatory influences must be managed.

Slide No: 77

