Energy Recovery from CO₂ Expansion at BIFoR FACE

Laura Gillingham MEng Mechanical Engineering

Project Outline

Emergent Layer - Deliverables

To produce and present a business case to upgrade the CO2 expansion methods based on research.

Canopy Layer - Methodology

- Calculate the maximum energy released through carbon dioxide expansion and the heat required.
- Select a viable method of extracting work from the expansion of the CO2.
- Research local heat sources to vaporise and warm the CO2 to ambient conditions.
- Develop a cost and environmental impact focussed business case to upgrade the facility.

Understory Layer - Objectives

The aim of showing the feasibility of reducing the electrical consumption at BIFoR FACE will be achieved by:

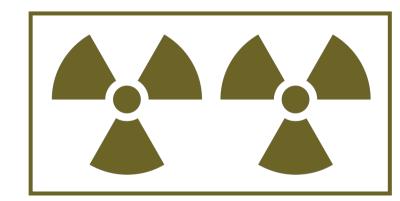
- Generating electricity from the expansion of CO₂.
- Reducing the electrical energy requirement for heating.

Forest Floor - Background

- The current fumigation system, designed in the 1990s, uses electrical heat exchangers.
- During fumigation, more than 200 tonnes of air-CO₂ mixture is used daily.
- The average annual electrical consumption is 220,000 kWh, costing approximately £35,000 per year.
- The plan is to elevate atmospheric CO₂ every growing season until 2026.

Current System at BIFoR

Storage Tanks



- Liquefied CO₂ storage • 1. Pressure 1725 kPa
- 1. Temperature -22°C

Evaporators

- Carbon dioxide vapourised
- 4 units, each with 2 fans
- Kelvion Searle KME commercial evaporator
- Use heat from ambient air
- Capacity 1.5 tonnes per hour per
- Heaters used alternately to prevent ice accumulation
- 2. Pressure 1725 kPa
- 2. CO₂ Temperature 12.8°C
- Ambient temperature 14°C
- Currently fans in wrong direction to utilise benefits of solar heating

Maximum Energy Calculation

Considering high pressure liquified carbon dioxide as cryogenic energy store. Using initial and final temperature and pressure of CO₂ at BIFoR, theoretical maximum work output from expansion (exergy) calculated as 574 kWh per day during fumigation.

Water Heat Source

- Water density means large potential for energy extraction.
- Local proximity to Shropshire Union Canal Main Line.
- Heat extraction from 6 tonnes of water to produce required daily energy.
- Flow determined by movement of water through locks.

Ground Heat Source

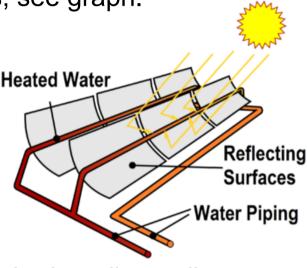

- Fluid pipes buried underground.
- Less annual variation in energy production.
- High initial costs and environmental damage.

Solar Collector

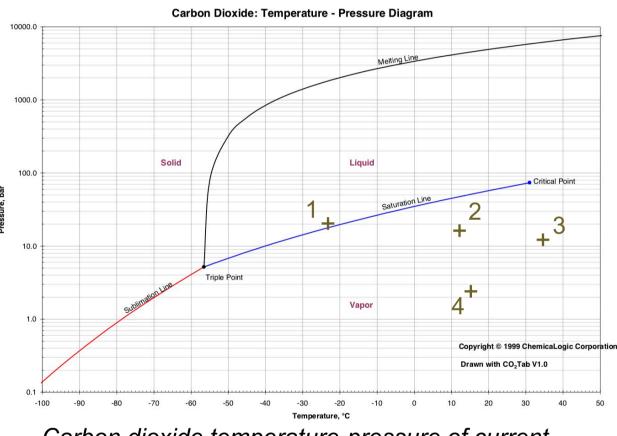
- Greatest efficiencies at temperatures close to ambient.
- · Open land adjacent to Mill Haft Forest potential location.
- · Low cost and minimal environmental damage.
 - Adiabatic expansion reduces gas temperature.
 - Heating required to avoid saturation and sublimation of gaseous carbon dioxide.

Super Heater

· Highest electricity requirement of all system components


Pipes connecting carbon dioxide evaporators, super heater and decompressors. Flow controlled via pneumatic actuators

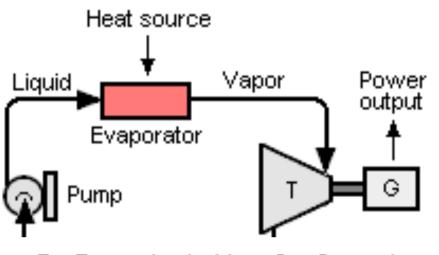
Solar Collector


UNIVERSITYOF

BIRMINGHAM

- Solar radiation focussed to heat fluid, either liquified carbon dioxide or heat exchange fluid.
- Greatest efficiencies at temperatures close to ambient.
- Low initial and maintenance costs.
- 2.3% reduction in energy usage at BIFoR in 2018, resulting from warmer average temperatures.
- CO₂ fumigation greatest during warmest months, see graph.

Focussed solar collector diagram courtesy of Energy Education


Carbon dioxide temperature-pressure of current system, diagram courtesy of ChemLogic

Data 2019 2500 2000 > 01 age

Average Temp and CO₂ Gas Flow

Turboexpander

—Avg Temp —CO2 Gas Flow

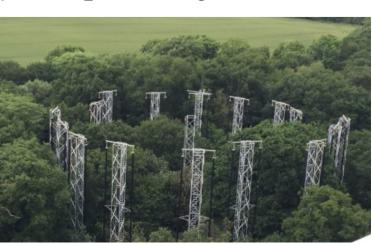
T = Expansion turbine, G = Generator

Schematic diagram of turboexpander. Diagram courtesy of Wikiwand

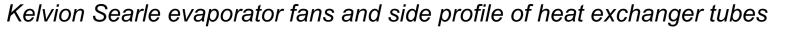
- High pressure fluid (CO₂ from storage tank) vaporised in evaporator by heat exchanger.
- High pressure vapour undergoes isentropic expansion in turboexpander.
- Work output from turbine used to generate electricity. Utilises energy removed from system during
- depressurisation. Greater energy output for high temperature
- difference.

Decompressor

- Two stage system
- 3. Stage 1 Pressure 1500 kPa - Temperature 35°C
- 4. Stage 2 Pressure 250 kPa
 - Temperature 15°C



Pipes transporting CO₂ air mixture, elevated from forest floor


Plenum

- Gaseos CO₂ transported to plenum through metal pipes
- Ambient temperature
- CO₂ mixed with air at array location
- CO₂-air mixture released to maintain 547.7ppm CO₂ level target

One of the Arrays. Image courtesy of **BIFoR**

