

Wood in Rivers

Investigating the impact on nutrient turnover and greenhouse gas production

Ben Howard^{1,2}

(BCH823@bham.ac.uk), Ian Baker² Nick Kettridge¹, Sami Ullah¹, Stefan Krause¹

'University of Birmingham, Geography Earth and Environmental Sciences, BIFoR (Forest Edge); 'Small Woods Association

Sources

Management schemes often include the addition of wood into rivers:

Directly, e.g. installing coppice wood fascines or leaky dams.

Indirectly, e.g. replanting riparian zones or flood plains.

Potential Impacts

Nutrient turnover: nitrate (NO₃) is the most problem nutrient pollutant in UK rivers. It can be transformed by micro-organisms in a process called denitrification, removing it from the water. When nitrate concs. are high, carbon (as an electron donor and source of cellular carbon) is limiting [1]. Wood additions could provide a source of carbon to increase the removal of nutrients.

Greenhouse Gases (GHG): wood additions could also increase the production of GHG[2]. For example, nitrous oxide (N2O) is produced in incomplete denitrification and methane (CH4) is produced if carbon is used as a terminal electron acceptor – both are more harmful than carbon dioxide (CO2).

GHG	N ₂	CO ₂	CH ₄	N ₂ O
Approx. 100 yr global warming potential [3]	0	1	30	300

What Goes In?

 River sediment - 3 treatments containing different amounts of organic matter and different grain size distributions.

Sandstone

Limestone

- Coppice wood used to make fascines which are used in river restoration.
 Potential source of labile carbon.
- Artificial stream-water NO₃: 10. NH₄: 0.1. PO₄: 0.1. (all mg/l)
- Nitrate (50 mg/l) injected monthly to see how much of it is transformed.
- Resazurin a reactive tracer which is irreversibly bio-transformed to resorufin and characterises microbial metabolic activity. Also injected monthly
- 15NO3 tracers to quantify the production of N2 and N2O by denitrification. The
 effect of oxygen conc. will also be investigated.

Mesocosms simulate real-life scenarios under controlled conditions. Here they are used to investigate the impact of wood in river sediments on biogeochemistry.

What Comes Out?

After injection of nitrate and resazurin (every 4 weeks), samples will be taken from the water column and the headspace through tubes with stopcocks, so that the mesocosm can remain closed. Dissolved oxygen, PH and temperature will be monitored.

Time after injection (hours)	0	2	4	24
Water column sampling	1	X	X	1
Headspace sampling	1	1	1	1

Headspace Samples			
Parameter	Technique	Units	
CO ₂	Gas chromatography	mg C-CH ₂ m ⁻² h ⁻¹	
CH ₄	Gas chromatography	mg C-CH, m 2 h-1	
N ₂ O	Gas chromatography	mg N-N,O m ⁻² h	

Water Samples				
Parameter	Technique	Units		
NO ₃	Skalar	me/l		
NO ₂	Skalar	mg/l		
NH ₄	Skalar	mg/l		
PO ₄	Skalar	mg/I		
Total dissolved Nitrogen	Shimadzu	mg/l		
Total dissolved Phosphorus	Shimadzu	mg/l		
Total organic Carbon	Shimadzu	mg/l		
Carbon quality	Specific ultraviolet absorbance	mg¹ m³		
Microbial metabolic activity	Fluorometer	up my h 1 (Production of execution		

Sediment Samples (before incubation)			
Parameter	Technique	Units	
Organic matter (OM) content	Loss on ignition	% Organic matter	
Carbonate content	Loss on ignition	% Carbonate	

What Do We Expect?

It is hypothesised that:

- Microbial metabolic activity will be higher in mesocosms containing wood.
- Increases in microbial metabolic activity will be higher in sediments with lower OM.

About the Author

My background is in conservation biology and forest management. I am interested in ecosystem services, nature-based solutions, and how

