Identifying Forest Structural Types along an Aridity Gradient in Peninsular Spain:Integrating Low-Density LiDAR, Forest Inventory, and Aridity IndexJulián Tijerín-Triviño', Daniel Moreno-Fernández', Miguel A. Zavala', Julen Astigarraga', and Mariano García²

1 Grupo de Ecología Forestal y Restauración (FORECO), Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain. 2 Grupo de Teledetección Ambiental, Departamento de Geología, Geografía y Medioambiente, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain.

INTRODUCTION

The characterization of forest structure across wide spatial scales is essential for forest monitoring and management. Using different sources might help to better characterize forest structure at continuous scale.

LiDAR data have proven useful for cost-effectively estimating forest structural attributes.

Forest inventories are the largest sources of information of forest states at the national level.

RESULTS

We identified four forest **structural types** for the **four provinces** studied, with significant differences in structural and climatic variables (Table 1).

Table 1: Mean and standard deviation of structural variables and the aridity index by each identified forest structural type based on the Spanish Forest Inventory.

Structural type	Basal area (m² ha⁻¹)	Tree density (No. trees ² ha ⁻¹)	Mean size (cm)	Mean tree height (m)	Aridity index
Sclerophyllous forests	7.91 (4.8)	314 (205.8)	21.3 (5.76)	7.99 (1.52)	18 (4.81)
Agrosilvopastoral and open woodland	9.59 (6.5)	151 (174.2)	41.2 (13.8)	8.07 (1.41)	21.1 (5.31)
Coppices and pines	22.1 (10.3)	1229 (564.5)	17.5 (5.23)	9.61 (1.81)	26 (8.13)
Mountain forests	29.1 (12.7)	654 (420.6)	30.5 (10.4)	13.8 (2.95)	36.6 (12.38)

Improving knowledge and characterizing **forest structure variations** along **large areas** remains a **priority** for **research, monitoring**, and land **management** (e.g., Torresan et al., 2016; Neuville et al., 2021).

OBJETIVES

- (i) to identify **typologies of forest structures** based on stand level NFI measurements and climatic variables via an unsupervised cluster analysis.
- (ii) to **classify forest structure from LiDAR** metrics using a Random Forest modeling approach.
- (iii) to **map regional patterns of forest structure** across a wide aridity gradient along peninsular Spain from low-density PNOA LiDAR data.

MATERIALS & METHODS

Universidad

de Alcalá

We used a large climatic gradient

The **RF model** had an overall accuracy of **60.63**% for the **training dataset** and **64.18**% for the **validation dataset**, thus showing **no overtraining** issues (Table 2).

Table 2: Contingency table for the training and the validation datasets.

	CONTINGE	NCY TABLE (Training	set: 70% of total o	bservations)			
Predicted	Observed				User's accuracy (%)		
	Sclerophyllous	Agrosilvopastoral and open woodland	Coppices and pines	Mountain forests			
Sclerophyllous	649	197	123	51	45,37		
Agrosilvopastoral and open woodland	71	158	18	28	57,45		
Coppices and pines	32	18	98	68	63,63		
Mountain forests	33	40	84	270	63,23		
Producer's accuracy (%)	82,68	38,26	30,34	64,75	Total accuracy (%)		
					60,63		
CONTINGENCY TABLE (Validation set: 30% of total observations)							
	CONTINGEN	CY TABLE (Validation	n set: 30% of total	observations)			
Predicted	CONTINGEN	CY TABLE (Validation Obse	n set: 30% of total rved	observations)	User's accuracy (%)		
Predicted	CONTINGEN	CY TABLE (Validation Obse Agrosilvopastoral and open woodland	n set: 30% of total rved Coppices and pines	observations) Mountain forests	User's accuracy (%)		
Predicted Sclerophyllous	CONTINGEN Sclerophyllous 293	CY TABLE (Validation Obse Agrosilvopastoral and open woodland 83	n set: 30% of total rved Coppices and pines 54	observations) Mountain forests 17	User's accuracy (%) 62,65		
Predicted Sclerophyllous Agrosilvopastoral and open woodland	CONTINGEN Sclerophyllous 293 35	CY TABLE (Validation Obse Agrosilvopastoral and open woodland 83 75	n set: 30% of total rved Coppices and pines 54 5	observations) Mountain forests 17 13	User's accuracy (%) 62,65 58,59		
Predicted Sclerophyllous Agrosilvopastoral and open woodland Coppices and pines	CONTINGEN Sclerophyllous 293 35 6	CY TABLE (Validation Obse Agrosilvopastoral and open woodland 83 75 5	n set: 30% of total rved Coppices and pines 54 5 5 52	observations) Mountain forests 17 13 20	User's accuracy (%) 62,65 58,59 65,55		
Predicted Sclerophyllous Agrosilvopastoral and open woodland Coppices and pines Mountain forests	CONTINGEN Sclerophyllous 293 35 6 11	CY TABLE (Validation Obse Agrosilvopastoral and open woodland 83 75 5 16	n set: 30% of total rved Coppices and pines 54 54 52 52 33	observations)Mountain forests171320114	User's accuracy (%) 62,65 58,59 65,55 65,52		
Predicted Sclerophyllous Agrosilvopastoral and open woodland Coppices and pines Mountain forests Producer's accuracy (%)	CONTINGEN Sclerophyllous 293 35 6 11 84.93	CY TABLE (Validation Obse Agrosilvopastoral and open woodland 83 75 5 5 16 41.90	n set: 30% of total rved Coppices and pines 54 54 52 33 33 36.11	observations) Mountain forests 17 13 20 114 69.51	User's accuracy (%) 62,65 58,59 65,55 65,52 Total accuracy (%)		

The **RF model** was used to **spatialize the results**, obtaining the **total extension** of each **forest structural type** and its **geographic distribution** (Fig. 4).

Fig. 1: Martonne aridity gradient and the location of the studied provinces in Spain.

Using the **main tree species** in each structural cluster we defined the structural forest type (Fig 2).

(see Fig. 1, Martonne, 1926).

We used the **4th Spanish National Forest Inventory** (SNFI) to extract **six structural variables** to **define forest structure**, and **k-medoids clustering** algorithm to determine the optimal number of clusters (Fig. 2).

Fig. 2: Plot distribution of the 4th Spanish Forest Inventory used to define forest structural types per province and an example of k-medoids.

Fig. 4: Distribution of the predicted forest structural types using LiDAR data.

The defined structural types were characterised with LiDAR variables. With a Random Forest model (RF), we spatialized the structural forest types in all the forests.

Fig. 3: PNOA-LiDAR data representation.

REFERENCES

de Martonne (1926). Géographes Français. 3, 3–5. Dodson et al (2012). Canadian journal of forest research. 42, 345–355. Neuville et al (2021). Remote Sensing. 13, 352. Torresan et al (2016). Annals of Forest Research. 59.

Restaino et al (2019). Ecological Applications. 29, e01902.

ACKNOWLEDGEMENTS

CONCLUSION

We identified **four** main **forest structural types** along the **aridity** gradient as determined by the main species, but with strong differences in structural characteristics and aridity (Table 1).

The high accuracy in RF (64,18%) allowed for the extrapolation of forest structural types in areas without NFI data (Fig. 4). However, more detailed LiDAR data and planned temporal LiDAR and NFI campaigns could help to further improve the predictions and calculate temporal trends.

Our methodology can be adapted to detect and analyze changes over space and time, especially considering that the PNOA includes multitemporal LiDAR coverage for the whole of the Spanish territory.

We thank the Ministry of Agriculture, Fisheries and Food (MAPA) for access to the Spanish Forest Inventory. We also acknowledge the research program 'Estímulo a la Excelencia para Profesores Universitarios Permanentes' funded by the University of Alcalá and the Community of Madrid (EPU-INV/2020/009) and the set of grants for carrying out projects to promote the Creation and Consolidation of Research Groups (CG20/CC-005). This work was supported by the grant DARE (RTI2018-096884-B-C32; MICINN, Spain). The authors thank Paloma Ruiz-Benito for helping with SNFI data and critical comments and design of this work and Elizabeth Hayden Sloan for revising the English grammar and syntax.

RESEARCH POSTER PRESENTATION DESIGN © 2019 www.PosterPresentations.com