A study of tree disease on St Helena Amy J Webster, Mojgan Rabiey, Megan C McDonald, Norbert Maczey, Rebecca Cairns-Wicks, Philip Taylor, Robert Reeder, Robert W Jackson

Introduction

St Helena is a volcanic island with an endemic cloud forest along it's central ridge¹. The forest provides water, CO² sequestration and tourism income¹. An unknown disease-causing agent coupled with climatic changes, threatens the forest resilience³.

Aims

- •Understand the pathosystem on the island to improve disease prevention and safeguard the cloud forest.
- •Improve the islanders ability to cope with the disease beyond the time of the project.

Methods

- •Monitoring health of 12 *Melanodendron integrifolium* (black cabbage) trees (Figure 1).
- •Survey of microbiota through isolations.
- •Multi-loci phylogenetic analysis of candidate pathogenic *Phytophthora spp.* Carried out using the ITS1, ITS2, coxspacer and YPT1 loci.

3. *Phytophthora spp.* isolated from several endemic trees however not from black cabbage. 4. Phytophthora isolate falls within P. cryptogea complex clustering with "P. kelmania" (Figure 4). 5. *Ilyonectria spp*. isolated from black cabbage trees and saplings.

Email: AJW118@student.bham.ac.uk Twitter: @AmyJW31

elevation ($r^2 = 0.4$).

UNIVERSITY OF BIRMINGHAM

Figure 2: Black cabbage tree 9 and 7 killed during monthly monitoring on the island. Tree 9 shown in June 2022 (A) and November 2023 (B). Tree 7 shown in June 2022 (C) and September

1. Cycles of recovery from dieback during wetter months, followed by death (Figure 2).

2. Clustering of dead black cabbage trees around deceased trees 9 and 7 (Figure 3 & 4).

Figure 3: Distribution of 12 focal black cabbage trees across the peaks (left) and a linear mixed model of correlation between dieback and

Figure 4: Phylogenetic trees showing the clustering of several *Phytophthora* species and unidentified isolates from St Helena based on the cox-spacer (left) and YPT1 (right) loci. All sequences were aligned using Geneious alignment and the trees produced using RAxML with 100 bootstraps, and best fit maximum-likelihood.

Conclusions

- Wet seasons may increase soil inoculum leading to tree death.
- "P. kelmania" has been associated with tree disease but better characterisation is necessary.
- Ilyonectra and Phytophthora have moved into nurseries.
- Heterogeneity between *Ilyonectria* isolates is host dependent

Figure 3: Percentage of alive (left) and dead (right) black cabbage trees found surrounding each of the 12 focal black cabbage trees monitored monthly from April 2022 – January 2023.

Future work •Artificial inoculations to examine host range •Build a reference genome for the Phytophthora and *Ilyonectria* on the island Population genetics study of candidate pathogens •qPCR diagnostic tool development to monitor replanting sites

References

1. Lambdon, P. & Cronk, Q. 2020., Frontiers in Ecology and Evolution. 2. Gray et al 2019., **Biodiversity and** Conservation, 28(6), pp.275-296. 3. Detheridge et al 2020., Fungal Ecology, 45.