Atmospheric exchanges of CO_2 , CH_4 and N_2O of temperate forest soils under elevated CO₂ at BIFoR-FACE

UNIVERSITY^{OF} BIRMINGHAM

Introduction

- Atmospheric exchanges of CO_2 , CH_4 and N_2O of temperate forest soils are an important aspect of the net global warming potential and climate mitigation function of forests.
- However, it's unclear how these fluxes will respond to rising atmospheric CO_2 concentrations (eCO₂) in temperate forests. Increased carbon sequestration under eCO₂ and storage in biomass and soils can influence the activities of soil microbes responsible for greenhouse-gas (GHG) process dynamics and hence net emissions
- Initial trends from 2017 2020 indicated that eCO₂ arrays had a higher efflux of CO_2 relative to aCO_2 arrays by +20%. However, during 2021 and 2022, eCO₂ arrays have seen a decline in the efflux of CO₂ by -27.5% relative to aCO₂
- Sink potential of CH_4 and efflux of N_2O are also significantly lower under eCO_2 arrays, by -72% and -109% respectively.

Aims

- 1. Determine inter and intra seasonal patterns in soil gas fluxes under eCO_2 and aCO_2
- autotrophic and 2. Partition the relative contribution of heterotrophic fluxes to net emissions.
- 3. Couple with wider available microclimatic and biotic data-streams to assess the key regulatory processes driving flux patterns.

Methodology

- CO₂ flux rates are determined through long-term LI-8100A continuous gas analyzer system.
- CH₄ & N₂O are measured through a coupled Picarro G2508 trace gas analyzer.
 - δ13C of CO2 efflux rates measured with loaned Picarro G2201-i (Aug – Nov 2023).
- Automated LI-8200-104 chambers are fitted to 9 collars in each Array, of which there are 3 collar depths.
 - 1 Shallow collar = Net Emissions.
 - 2 Medium collar = Net Emissions (minus lateral diffusion).
 - 3 Deep collar = Pseudo-root exclusion collars.
- Two parallel systems exist, placed within paired eCO₂ and aCO₂ arrays and rotated fortnightly.

Conclusions

- 1. Efflux of CO₂, N₂O and the uptake of CH₄ have declined under eCO_2 during 2022 – 2023 by 40%, 109% and 72% respectively.
- 2. Lower VWC across a soil profile up to 1m was detected in eCO_2 arrays, which should stimulate microbially mediated gas flux process dynamics and increase the efflux of CO_2 , N_2O and the uptake of CH_4 .
- 3. Higher relative mean differences (Δ %) between pseudo-root exclusion and zero-exclusion chambers coupled with δ 13C keeling plot R² values suggests reduced heterotrophic or enhanced autotrophic contribution to the efflux of CO2 under eCO_2

Alex Armstrong¹, Sami Ullah¹, Liz Hamilton¹, Elena Vanguelova², Mike Morecroft³, Nathan Basiliko⁴, Rob MacKenzie¹, Niall McNamara⁵ ¹ University of Birmingham, ² Forest Research, ³ Natural England, ⁴ Laurentian University, ⁵ UK Centre for Ecology and Hydrology

> Figure 3 – CO2 flux rates (a, g) and mean collar values (b, h) with corresponding δ 13C values derived from linear flux rates (c, d, i, j), with keeling plot derived R2 values for each observation (e, k) alongside mean R^2 values for each collar type (d, l)

tables for mean values and $\Lambda\%$ between shallow, deep and medium collar type

Discussion

Soil gas flux patterns, differences between and within $eCO_2 \& aCO_2$ Arrays.

• Flux of CO₂ is significantly lower under eCO₂ ~-40% (p<.001)*

- ~ 1.2 μ mol m⁻² s⁻¹ lower efflux.
- Stochastic episodes of high efflux in Spring and Autumn.
- Uptake of CH_4 is significantly lower under $eCO_2 \sim -72\%$ (p<.001)* • ~ 0.0021 μ mol m⁻² s⁻¹ lower uptake rate.
 - Even under significantly drier soil conditions under eCO_2
- Efflux of N₂O is significantly lower under eCO₂ ~109% (p<.001)*
 - ~ -0.0000567 μ mol m⁻² s⁻¹ lower efflux.
 - Difference driven by A4, low emissions and episodes of uptake possibly driven by significantly lower soil moisture across all soil depths relative to A2 (-14.3% VWC).

Discussion

Soil moisture and temperature; key regulatory drivers of gas fluxes.

- VWC is significantly different between eCO₂ and aCO₂ (p<.001)*
 - Highly variable across soil profile, equivalent mean difference ~-4.69%.
 - A1 -> A3 = eCO₂ -4.4%
 - A4 -> A2 = eCO₂ -14.3%
 - A6 -> A5 = eCO_2 +4.6%

Temperature shows more homogeneity across both Arrays and depth.

- A1 -> A3 = eCO₂ +0.17^{oC}
- A4 -> A2 = eCO₂ +0.03^{oC}
- A6 -> A5 = eCO₂ +0.27^{oC}
- Strong significantly negative correlation with VWC (eCO2 = -.44, aCO2 = -CO₂ .44) and a strong significantly positive correlation with temperature (eCO2 = .48, aCO2 = .48) across all depths and Arrays.
- Strong significantly positive correlation with VWC (eCO2 = .67, aCO2 = CH₄ .42) and a strong significantly negative correlation with temperature (eCO2 = -.64, aCO2 = -.32) across all depths and Arrays. Varied response across both Arrays and depth, showing weak significant
- N_2O correlations with VWC (eCO2 = .06, aCO2 = .06), but converse responses to temperature (eCO2 = -.05, aCO2 = .09).

Discussion

Disseminating gas fluxes and their relative sources; collar type & δ13C analysis.

- Higher mean differences (Δ %) between pseudo-root exclusion (3) and zero-exclusion chambers (2) within the eCO₂ arrays suggests a potential decline in the heterotrophic or an increase in the autotrophic contribution to CO_2 effluxes.
 - Coupled with significantly lower $\delta 13C$ keeling plot R² values from CO₂ efflux rates, this further suggests a potential shift in source contributions.
 - Potential increased reliance on N-obtaining ectomycorrhizal fungi under ECO2 driving an enhanced Gadgil effect; effective competitive exclusion of other microbial groups.
- $CH_4 \& N_2O$ shows no significant difference between shallow (1) and pseudo-root exclusion chambers (3) under eCO_2 .
 - Uptake of CH₄ and efflux of N₂O are significantly lower under eCO₂, across all Chamber types.