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Executive summary

Vaccines can be highly effective tools in combating antimicrobial resistance (AMR). They reduce the
incidence of both resistant and susceptible infections, thereby also decreasing antibiotic consumption.
Advances in vaccine technology in recent decades have made developing vaccines against previously
challenging targets possible. There is a need to understand what vaccines are currently in development and
those which may be available as tools to contribute to controlling AMR in the future. This analysis considers
vaccine candidates in preclinical and clinical development against pathogens on the 2017 WHO Bacterial
Priority Pathogens List (WHO BPPL), in addition to Clostridioides difficile and Mycobacterium tuberculosis.
Sixty-one vaccine candidates in active clinical development and 94 candidates in confirmed active preclini-
cal development were identified.

The report identified four groups of pathogens with vaccine candidates in various stages of clinical develop-
ment, and with varying degrees of feasibility for vaccine development.

The first group (Group A) contains pathogens with vaccines already licensed. These exist against four priori-
ty pathogens for AMR: Salmonella enterica ser. Typhi, Streptococcus pneumoniae, Haemophilus influenzae
type b (Hib), and Mycobacterium tuberculosis. The effectiveness of the vaccine against S. pneumoniae
dramatically reduced mortality in the United States of America (USA) and Europe in comparison to other
regions where the vaccine is not widely available and used. The coverage of authorized vaccines should be
increased to maximise their impact on AMR. Current Bacillus Calmette-Guérin (BCG) vaccines against
tuberculosis (TB) do not adequately protect against TB and the development of more effective vaccines
against TB should be accelerated.

The second group (Group B) includes pathogens with vaccines that are in late-stage clinical trials with high
development feasibility: extraintestinal pathogenic Escherichia coli (ExPEC), Salmonella enterica ser. Para-
typhi A, Neisseria gonorrhoeae, and Clostridioides difficile. Hence, for two out of the six leading pathogens
for deaths associated with AMR (1), a vaccine either already exists, as for S. pneumoniae, or maybe feasible,
as for E. coli. R&D efforts and development of vaccines in late-stage clinical trials should be continued and
where possible accelerated.

The third group (Group C) contains pathogens with vaccine candidates either in early clinical trials or with
moderate to high feasibility of vaccine development: enterotoxigenic E. coli (ETEC), Klebsiella pneumoniae,
non-typhoidal Salmonella (NTS), Campylobacter spp., and Shigella spp. Vaccines against these pathogens
might be available in the long term, however, short term solutions to prevent resistance should focus on
other interventions to reduce AMR.

The fourth group (Group D) contains pathogens with a small number or no vaccine candidates in the pipeli-
ne and low vaccine development feasibility: Acinetobacter baumannii, Pseudomonas aeruginosa, Entero-
bacter spp., Enterococcus faecium, Staphylococcus aureus, and Helicobacter pylori. Vaccines against these
pathogens are unlikely to be available in the short term, and alternative interventions to prevent AMR
caused by these pathogens should be considered. It is even more worrying that the drug development pipeli-
ne for A. baumannii and P. aeruginosa also is insufficient to counter this threat.

All data contained in this report can be downloaded from the WHO Global Observatory on Health R&D.
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1. Introduction

Antimicrobial resistance (AMR) refers to the growing threat of bacteria, viruses, fungi or
parasites becoming unresponsive to antimicrobial medicines (2-4). Most recent estimates
suggest that 4.95 million deaths were associated with AMR in 2019 (7) meaning that if all
resistant infections were prevented, this many lives would be saved (5). Models also estimate
AMR could result in 2.4 million deaths across Europe, North America and Australia between
2015 and 2050, with even more in low- and middle-income countries (LMICs) (4).

The challenge of AMR is not limited to the threat that we are running out of effective treatments for
infectious diseases. AMR also compromises other modern medical procedures that rely on effective
control of secondary infections, including surgery, organ transplants and treatment for HIV, liver and
kidney disease, physical trauma and cancer (6).

The potential of vaccines as effective tools to slow the emergence and spread of AMR is well established.
However, a broad overview of the vaccine development landscape to inform funders, researchers and
policymakers is lacking. This pipeline analysis of bacterial vaccines in preclinical and clinical development
is part of the broader World Health Organization (WHO) strategy to optimize the development and
use of vaccines in reducing the spread of AMR. This analysis maps out the preclinical and clinical
development landscape for vaccines. The report focuses on products that target bacterial pathogens
outlined in the first WHO bacterial priority pathogens list (WHO BPPL), including M. tuberculosis (7). In
addition, this analysis also includes the pipeline of vaccines for C. difficile. It is important to note that
the criteria for establishing priorities for antibiotic development differ from those for prioritizing vaccine
development (8). AMR pathogens that have low incidence may be better controlled by different methods
than prophylactic vaccines.

There are a number of published reports evaluating research and development (R&D) opportunities to
tackle drug-resistant infections with vaccines. These previous evaluations include the WHO preclinical
antibacterial pipeline (9); the Pew Charitable Trust analysis of non-traditional antibacterial products in
development (70); the Access to Medicine Foundation benchmark report (77); and the Wellcome Trust
report evaluating research and development (R&D) opportunities for tackling drug-resistant infections
with vaccines (12). However, none of these earlier reports analyse the complete vaccine pipeline for
pathogens on the WHO BPPL nor goes into the depth of this analysis which considers both preclinical
and clinical stages of development and lessons learned from vaccines no longer under development.

This analysis of the vaccine pipeline should be read in conjunction with the WHO antibacterial pipeline
reviews (9). These reviews have been published annually since 2017 and provide detailed analyses of the
preclinical and clinical development pipelines for antibacterial treatments. This analysis of the vaccine
pipeline aims to fill the data gap in the vaccine research landscape. All data used in this report are also
made available in an interactive format on the WHO Global Health R&D Observatory.



https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/who-antibacterial-preclinical-pipeline-review
https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens
https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/who-review-of-bacterial-vaccines-in-development-for-priority-pathogens

MECHANISMS OF VACCINE IMPACT ON AMR (8).

H -

VACCINES
|

PROTECT INDIVIDUALS

Prevent vaccinees from getting sick

|

00

PREVENT SAFEGUARD
COMPLICATIONS DECREASE INFECTIONS COMMUNITIES
Reduce the incidence of Caused by both resistant and Decrease transmission
secondary infections non-resistant pathogens through herd immunity

|

DECREASE ANTIBIOTIC USE

Diseases prevented by vaccination
do not require antibiotic treatment

|

SUPPRESS RESISTANCE
J EVOLUTION .

Decrease exposure of
pathogens residing in and on
the body to antibiotics that
select for resistance

DECREASE MORE EFFECTIVE

ANTIBIOTICS

INDIVIDUAL RISK
Current antibiotics can be
used for a lot longer; less
need to develop new
antibiotics

and transmission of
resistant pathogens



Role of vaccines in addressing AMR

While it is important to invest in developing new antibacterial treatments, vaccines can be an important
additional tool in addressing AMR (72-17) and they operate through multiple mechanisms (78) (Fig. 1).
First, vaccination against a bacterial infection can reduce transmission of drug-resistant and susceptible
strains directly in vaccinated populations and indirectly, in unvaccinated populations, through herd
immunity. For example, the introduction of pneumococcal conjugate vaccine (PCV-7) in children
in the USA resulted in an 84% reduction in invasive disease caused by the forms of drug-resistant
Streptococcus pneumoniae specifically targeted by the vaccine, in children under 2 years of age. The
same vaccination campaign also reduced invasive pneumococcal disease (IPD) in over-65-year-olds by
49%, despite vaccines not being given to this group (79). Second, by reducing the overall burden of
infectious diseases, bacterial and viral vaccines reduce antibiotic use, a key driver of resistance (78).
Vaccination against viruses, though beyond the scope of this report, reduces the number of people who
are susceptible to secondary bacterial infections and require antibiotic treatment, as well as the number
of antibiotics inappropriately prescribed to treat viral infections (20). Rotavirus vaccination is estimated
to prevent 13.6 million antibiotic prescriptions every year for children under the age of 5 in LMICs (27).

The 2021 WHO AMR Vaccine Action Framework (8, 22) outlines actions for understanding,
characterizing and communicating the role of vaccines in preventing AMR. The document emphasises
the need to expand the use of licensed vaccines, accelerate research into new vaccines and expand
global understanding and awareness of the impact of these vaccines.

While resistance has emerged to every antibiotic that has been introduced, resistance to bacterial
vaccines is less an issue of concern. Consequently, they are highly attractive as tools for combatting
AMR. Vaccines form part of a sustainable response to AMR, as they prevent infections without selecting
for antibiotic resistance. Although vaccine-evading strains can evolve in rare cases (e.g. PCVs) and there
are concerns regarding novel variants and coronavirus (COVID-19) vaccines, the processes involved
tend to be comparatively slow and often do not obliterate the vaccine's efficacy entirely. Therefore, an
effective vaccine can continue to be viable for a long time (23). Vaccines can also be utilised to rapidly
respond to disease outbreaks in conjunction with improvements to water, sanitation and hygiene, and
appropriate use of public infection prevention measures, such as mask wearing and social distancing.
The use of typhoid conjugate vaccine to address drug-resistant typhoid in Pakistan provides one example
(24).

Vaccines may be able to act in a way that is synergistic with antibiotics. For example, although the
primary selection criteria for serotypes of S. pneumoniae included in PCV was disease burden, the
majority of strains selected carried genetic elements conferring drug resistance. Some current PCVs
include 10-20 strains and cover 90% of drug-resistant strains causing disease in children (25). By
directly reducing the burden of circulating drug-resistant strains, vaccines may make antibiotics that
would otherwise have become ineffective useful again. Some limitations to multivalent PCVs remain,
including serotype coverage, serotype replacement, not all age groups making antibodies and duration
of immunity. However, research to improve these vaccines is ongoing. PCVs targeting even more strains
have been licensed, and additional ones are under development.

1. Introduction



2. Results

This report identifies and describes vaccines in preclinical and clinical development
as well as failed vaccine candidates. For each pathogen, assessments of the feasibility of
generating a vaccine based on analyses of biological, product development, and access and
implementation feasibility are also incorporated (Table 1; see (26) for full methodology).

Summary of main findings

In the analysis, pathogens in the WHO BPPL have been broadly categorized in terms of feasibility (based
on the progression of vaccine candidates in clinical and preclinical development and assessments of the
feasibility of generating a vaccine based on analyses of biological, product development and access and
implementation feasibility (Table 1; see (26) for full methodology)) into the four groups outlined below.
The report is structured by pathogen and ordered by Pipeline Feasibility Group.

- Pipeline Feasibility Group A (very high): Constitutes AMR priority pathogens for which licensed vaccines
already exist. This includes Salmonella enterica ser. Typhi, Streptococcus pneumoniae, Haemophilus
influenzae type b (Hib) and Mycobacterium tuberculosis. Recommendation for Group A: Increase the
coverage of authorized vaccines in line with WHO immunization targets to maximise impact on AMR.
Also, the development of more effective vaccines against M. tuberculosis should be accelerated.

- Pipeline Feasibility Group B (high): Constitutes AMR priority pathogens for which a vaccine candidate
is in late-stage development Phase 3) and vaccines would be suitable to target AMR infections caused by
these priority pathogens in the coming years. This includes: Extraintestinal pathogenic E. coli (ExPEC),
S. enterica ser. Paratyphi A, Neisseria gonorrhoeae, and Clostridioides difficile. Recommendation for
Group B: Accelerate the development of a vaccine for these pathogens.

- Pipeline Feasibility Group C (moderate): Constitutes AMR priority pathogens for which a vaccine
candidate has either been identified in early clinical trials or been identified as a feasible vaccine
target during expert review. For these pathogens, vaccines may be feasible solutions to target AMR
infections. These pathogens are associated with moderate feasibility of vaccine development and
include enterotoxigenic E. coli (ETEC), Klebsiella pneumoniae, non-typhoidal Salmonella (NTS),
Campylobacter spp. and Shigella spp. Given the early stages of development, no vaccine for these
pathogens will be available on the market soon. Recommendation for Group C: Continue the
development of a vaccine for these pathogens and expand knowledge of potential for vaccine use
and impact and other tools to combat the AMR threat.

- Pipeline Feasibility Group D (low): Constitutes AMR priority pathogens for which no vaccine candidate
has been identified in clinical development and therefore vaccines are not a feasible solution to target
AMR infections in the foreseeable future. These pathogens are associated with low feasibility of
vaccine development and include the priority pathogens Acinetobacter baumannii, Pseudomonas
aeruginosa, Enterobacter spp., Enterococcus faecium, Staphylococcus aureus and Helicobacter
pylori. Research and investment should explore alternative methods of control, including treatments
and effective infection prevention and should ensure access to clean water and adequate sanitation
and hygiene facilities. This is even more urgent as the drug development pipeline for A. baumannii
and P. aeruginosa is currently also insufficient to adequately address the burden posed by these
critical pathogens. Recommendation for Group D: Focus on other prevention and control tools to
combat AMR threat linked to these priority pathogens.

Preclinical vaccine pipeline

The analysis identified a total of 94 confirmed active preclinical candidates. Of the critical priority
pathogens, ETEC has the most candidates in preclinical development (10), followed by A. baumannii
(5), ExPEC (4), K. pneumoniae (5) and P. aeruginosa (4) (Fig. 2). In terms of the high priority pathogens,

S. aureus has the most candidates in preclinical development (14), followed by Salmonella enterica ser.
Typhi (8), H. pylori (6), NTS (6), C. jejuni (4), S. enterica ser. Paratyphi A (3) and N. gonorrhoeae (2).
Of the medium priority pathogens, S. pneumoniae (17) has the highest number of vaccine candidates,
followed by Shigella spp. (10) and Hib (3). In general, critical priority pathogens have fewer preclinical

candidates in development. M. tuberculosis has the highest number of vaccine candidates (20) in
preclinical development. C. difficile has 5 candidates.

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis



Table 1. Definition of feasibility based on biological, product development, and access and
implementation feasibility. Indicators and thresholds were developed for each of these categories,
and pathogens were rated from very low to very high feasibility (26).
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Fig. 2. Total number of candidates in preclinical development by pathogen. Note that some vaccine
candidates are double counted here, as they target more than one pathogen. Pathogen type refers
to status as defined by the WHO priority pathogens list (7). ETEC: enterotoxigenic Escherichia coli;
ExPEC: extraintestinal pathogenic E. coli; Hib: Haemophilus influenzae type b; NTS: non-typhoidal
Salmonella; BPPL: bacterial priority pathogen list; spp.: species; TB: tuberculosis.
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Fig. 3. (a) Total number of candidates in active clinical development by pathogen.
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Fig. 3. (b) Total number of candidates both in active clinical development and that have become
inactive or discontinued over the last 10 years, by pathogen. Note that some vaccine candidates are
double counted here as they target more than one pathogen. Pathogen type refers to status as defined
by the WHO priority pathogens list (7). ETEC: enterotoxigenic Escherichia coli; ExPEC: extraintestinal
pathogenic E. coli; Hib: Haemophilus influenzae type b; NTS: non-typhoidal Salmonella; BPPL:
bacterial priority pathogen list; spp.: species; TB: tuberculosis.
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Clinical pipeline

This report has identified a total of 61 vaccine candidates in active clinical development. S. pneumoniae
has the greatest number of vaccine candidates in clinical development (76), closely followed by M.
tuberculosis (13) (Fig. 3a). There are no vaccine candidates in clinical development against A. baumannii,
Enterobacter spp., Enterococcus faecium, H. pylori or P. aeruginosa. For the remaining pathogens
rated as a critical priority in the 2017 WHO BPPL, Klebsiella pneumoniae has one vaccine candidate
that recently entered the clinical pipeline, and Escherichia coli, which includes ETEC and ExPEC, has
six and four vaccine candidates in development respectively.

For the remaining pathogens rated as high priority, there are two vaccine candidates in the pipeline
against Staphylococcus aureus, six against Helicobacter pylori, four against C. jejuni, nine candidates
against all serovars of Salmonella, and only one vaccine candidate against Neisseria gonorrhoeae. All
medium priority pathogens have vaccine candidates in clinical development. Overall, pathogens rated
as a critical or high priority in the 2017 WHO priority pathogens list tend to have fewer candidates in
clinical development than the pathogens categorized as medium priority.

Fig. 4. Number of candidates in different phases of clinical development. Bars are stacked by those
candidates that are currently in active development and those that are no longer under development,
stratified by pathogen. Note that some vaccine candidates are double counted here as they target
more than one pathogen. Phase 2 includes candidates in Phases 1/2, 2a, and 2b; Phase 3 includes
candidates in Phases 2/3 and Phase 3. Data as of October 2021. ETEC: enterotoxigenic Escherichia
coli; ExPEC: extraintestinal pathogenic E. coli; Hib: Haemophilus influenzae type b; NTS: non-
typhoidal Salmonella; TB: tuberculosis.
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Fig. 5. (a) Total number of candidates in active clinical development, by pathogen and route of
administration
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Fig. 5. (b) Total number of candidates in active clinical development, by pathogen and approach.

The approach is split into two levels; the first level describes whether the vaccine candidate approach
is subunit, viral vector or whole pathogen and the following description describes more specifically
the approach within this categorization. ‘Combination” denotes that a combination of approaches
was used and ‘NA" denotes that there was no appropriate sub-category of approach. Note that

some vaccine candidates are double counted here as they target more than one pathogen. ETEC:
enterotoxigenic Escherichia coli; ExPEC: extraintestinal pathogenic E. coli; GMMA: generalized
modules for membrane antigens; Hib: Haemophilus influenzae type b; NTS: non-typhoidal
Salmonella; OMV: outer membrane vesicle; TB: tuberculosis.
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The broader picture of investmentis shown in Fig. 3b, which shows both active and inactive or discontinued
candidates. As previously mentioned, currently there are no candidates in clinical development against
Shigella dysenteriae, H. pylori, and the critical priority pathogen, P. aeruginosa. In the past there have
been vaccine candidates for these pathogens in different stages of clinical development but all were
discontinued (Fig. 3b). This is not uncommon given the scientific, logistical and economic challenges
associated with vaccine development. Similarly, there were nine vaccine candidates against S. aureus
that failed or were discontinued, including three candidates in late-stage clinical trials.

The pathogen which has the greatest number of vaccine candidates in Phase 2 or Phase 3 of clinical
development is S. pneumoniae, closely followed by TB (Fig. 4). The pathogens with the highest number
of candidates in Phase 1 are ETEC, S. pneumoniae and Shigella flexneri (Fig. 4). The analysis indicates
that most candidates fail in early-phase clinical trials. Some exceptions are candidates discontinued in
late-stages against S. aureus, C. difficile, S. pneumoniae, Hib and ETEC (Fig. 4). This is challenging for
developers as when vaccine candidates fail in late clinical stages high levels of investment have already
occurred.

Route of administration

The majority of active vaccine candidates are parenteral, in particular for S. pneumoniae (Fig. 5a).
Most vaccine candidates against enteric pathogens (ETEC, Shigella sonnei and Salmonella enterica ser.
Paratyphi A) are orally administered. The route of administration may reflect the location of infection
and, hence, primary immune response. Oral vaccines tend to broaden accessibility, especially in settings
with limited access to cold-chain facilities.

Fig. 6. Total number of candidates in active clinical development, by pathogen and main developer
type. Note that some vaccine candidates are double counted here as they target more than one
pathogen. ETEC: enterotoxigenic Escherichia coli; ExPEC: extraintestinal pathogenic E. coli; Hib:
Haemophilus influenzae type b; NTS: non-typhoidal Salmonella; TB: tuberculosis.

15
w
[
z
@©
9
2
@ 10
O
[}
£
[S]
[S)
@©
>
kS 5
—
[
Q
€
=3
- l l
o BN
g 2 5 g £ T 2 g T &2 L2 pp g 8§ T T OE & F OB
S IS £ & T 3 g o S = © g S 23 o ¢ 3
S 3 W R g x § 3 £ £ 8§ TR F Loy
. 41 ) [§] 3 I~ N o N
S 5 s § s S § ¢z @ & 5 3
Q = S T ©? © s 9 03 8 @
s T Q Sy S § S T S
S = ) 9 .
. £ < . S < Q
v S & s X g
w
Developer Type
Academia B Public-Private
B Government Other Pathogen

B Private Sector

2. Results



Scientific approaches

Many different scientific approaches are being explored to develop and manufacture vaccines (Fig. 5b).
Some pathogen targets show less diversity in approaches than others, perhaps as a consequence of
past success in clinical development. Where less is known, research may be more diverse. For example,
the vast majority of research on S. pneumoniae, for which there are already licensed pneumococcal
conjugate vaccines, focuses on conjugate vaccines and advancing the success of this technology. On the
other hand, vaccine candidates against ETEC are not yet licensed and include a variety of approaches,
such as inactive whole cell, live attenuated and recombinant technologies.

Developers

Unsurprisingly, given the scale and resources required for vaccine clinical trials, the vast majority of
developers are in the private sector (Fig. 6). However, the presence of academic developers of vaccines
for M. tuberculosis, ETEC, S. enterica ser. Paratyphi A, NTS, S. flexneri and others may reflect the
limited commercial attractiveness of diseases where potential markets are predominantly in low-income
countries.

Prophylactic vs therapeutic vaccines

The majority of vaccine candidates identified are prophylactic (Fig. 7). Only a few therapeutic vaccines
target tuberculosis (TB) and ExPEC. Therapeutic vaccines have the potential to reduce reinfections,
for example urinary tract infections (UTI) caused by ExPEC, and reduce associated antibiotic use.
Therapeutic vaccines have the advantage that they could be administered to at-risk populations that are
already colonized or infected with the pathogen.

Fig. 7. Total number of candidates in active clinical development, by pathogen and whether they are
prophylactic or therapeutic. Note that some vaccine candidates are double counted here as they target
more than one pathogen. ETEC: enterotoxigenic Escherichia coli; ExPEC: extraintestinal pathogenic

E. coli; Hib: Haemophilus influenzae type b; NTS: non-typhoidal Salmonella; TB: tuberculosis.
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Vaccines being developed against WHO bacterial priority pathogens

Group A: Pathogens with licensed vaccines

Salmonella enterica ser. Typhi

Vaccines in development Preclinical: 8; Phase 1: 1; Phase 2: 1; Phase 3: 3

Potential target population 9-15-month-old infants (routine immunization)
and children up to 15 years of age (catch-up
campaigns) in Salmonella enterica ser. Typhi
endemic settings

Biological feasibility High
Product development feasibility High
Access and implementation feasibility High

Eight vaccines are in late-stage preclinical development against S. enterica ser. Typhi (Table 2). Three
of these candidates are trivalent: modified recombinant Ty21a, which targets S. enterica ser. Typhi,
Shigella flexneri and S. sonnei; the combined iINTS-GMMA (invasive NTS-generalized modules for
membrane antigens) and iNTS-TCV (typhoid conjugate vaccine) vaccine candidates, both of which
target non-typhoidal Salmonella (NTS) enterica serotypes Typhimurium and Enteritidis, in addition to
S. enterica ser. Typhi. The combined iINTS-GMMA and TCV vaccine is scheduled to begin Phase 1a in
2022 and Phase 2 in 2023. There are also three bivalent candidates which target S. enterica ser. Typhi
and S. enterica ser. Paratyphi A.

Five vaccine candidates are currently in clinical trials (Table 3). The Vi-DT conjugate vaccine is
currently in Phase 3 trials in the Philippines and Indonesia (NCT04051268, NCT04204096) (27, 28).
WHO prequalification will be sought after Indonesian national regulatory authority (NRA) approval.
In addition, CVD1000 is a trivalent candidate under development for non-typhoidal S. enterica ser.
Typhimurium and Enteritidis, and typhoid. The Phase 1 trial is scheduled for completion in September
2022 (NCT03981952). In addition to conjugate vaccines, another approach includes a live attenuated
whole cell vaccine which targets both S. enterica ser. Paratyphi A and Typhi. This candidate was
scheduled to finish Phase 2b clinical trials in August 2021 (NCT01405521) (29).

Two projects that reached clinical trials are no longer under active development or have been
discontinued. TyphETEC-ZH9 typhoid-LT/ST (heat-labile/heat-stable) toxoid vaccine passed the Phase
1 clinical trial but has returned to preclinical development for expansion to include Shigella antigens in
addition to ETEC and S. enterica ser. Typhi. Typhvax vaccine candidate, which used a novel approach to
vaccine development by noncovalently entrapping the Vi polysaccharide capsule in a matrix, was found
to be safe and immunogenic in Phase 1 trials. But there has been no further work since February 2017
(30) INCT03926455).

Over 20 vaccines have been authorized and brought to market for S. enterica ser. Typhi, which causes
typhoid fever (72). These vaccines fall into three categories: unconjugated Vi polysaccharide (ViPS), live
attenuated Ty21a vaccine and TCV (37). The WHO Strategic Advisory Group of Experts on Immunization
(SAGE) recommends existing approved TCV over ViPS and Ty21a due to improved immune response,
expected longer duration of protection and suitability for use in those under 2 years of age (37). Increased
uptake and roll-out of TCV will be effective in reducing the incidence of typhoid fever caused by S.
enterica ser. Typhi, including AMR strains. However, research to explore the impact of the vaccine on
long-term carriers of S. enterica ser. Typhi is ongoing. Current research emphasizes creating a vaccine
that incorporates multiple pathogenic targets, which would make the value proposition for vaccination
even more favourable.

2. Results
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Haemophilus influenzae type b

Vaccines in development Preclinical: 3, Phase 1: 1; Phase 2: O; Phase 3: 3
Potential target population 1-12 months

Biological feasibility Very high

Product development feasibility Very high

Access and implementation feasibility Very high

Three vaccines against Hib are in active preclinical development and forty-six vaccines are already
licensed against Hib. Indeed, vaccines against Hib have been available since the 1990s and have almost
eliminated invasive Hib in children under 5 in developed countries (72). Vaccines have been shown to
reduce the prevalence of certain drug-resistant strains of Hib (32). Although current Hib vaccines are
approximately 70% effective, four vaccines are in active clinical trials, three of which were in or recently
completed Phase 3 clinical trials (Table 5). For example, the paediatric hexavalent vaccine Shan 6
(NCT04429295), which was scheduled to complete its Phase 3 trial in November 2021 and has already
filed an New Drug Application (NDA). In addition, LBVD, a combined DTP-HepB-IPV-Hib (diphtheria,
tetanus, pertussis, hepatitis B, poliomyelitis and Hib) vaccine completed Phase 1 trials in August 2019
(NCT04429295). Four clinical candidates ceased or stalled development in the last 10 years (Table 7).

Despite the availability of a safe and effective vaccine for Hib, greater uptake and global coverage are
needed to combat the increasing incidence of drug-resistant Hib (22, 33).

2. Results
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Streptococcus pneumoniae

Vaccines in development Preclinical: 17; Phase 1: 4; Phase 2: 8; Phase 3: 4

Potential target population 1-12 months for the existing vaccine, or a
vaccine with improved efficacy against invasive
pneumococcal disease, lobar pneumonia and
acute otitis media could be extended to 1-59
months.

The target population could also include older
adults with underlying comorbidities such as
chronic lung disease.

In high-income countries (HICs), such as the
USA, Pfizer’s Prevnar 20 is recommended for
adults aged 65 and older and adults aged 19-64
with certain risk conditions.

Biological feasibility Covering 10 major serotypes: very high
Covering all major serotypes: medium

Product development feasibility Covering 10 major serotypes: medium
Covering all major serotypes: low

Access and implementation feasibility Covering 10 major serotypes: medium
Covering all major serotypes: medium

Seventeen vaccines in preclinical development specifically target S. pneumoniae, all of which are being
developed in the private sector. Five of the candidates are conjugate vaccines, while other approaches
include multiple antigen presenting system (MAPS), recombinant vaccine, pathogen-agnostic
mechanisms, and outer membrane vesicles (OMV) (Table 8). There is also work on preclinical models
to demonstrate that mucosal maternal vaccination with novel pneumococcal vaccines can protect
offspring from the establishment of pathogenic pneumococcal infections(34).

Currently, 16 vaccine candidates are in active clinical trials (Table 9), including multiple pneumococcal
conjugate vaccines (PCV), that follow the approach of some licensed pneumococcal vaccines, which
mix purified capsular polysaccharide of pneumococcal serotypes conjugated to a carrier protein. Four
vaccines are in Phase 1 clinical trials, including two 13-valent vaccines, a 15-valent euPCV vaccine,
and a protein-based pneumococcal vaccine (PBPV). The last covers 70% of all pneumococcal
serotypes and is scheduled for completion in April 2022 (NCT04087460).

Eight vaccines are in Phase 2 clinical trials, including multiple PCVs with valencies from 11 to 23.
A pneumococcal protein vaccine (PPrV) using a recombinant protein method which proved to
increase protection over current polysaccharide and conjugate vaccines is also in Phase 2
clinical trials (NCT01446926) (35). A MAPS vaccine, which showed proof of concept in Phase 1 trials
(NCT03803202), has now moved to Phase 2. Four vaccines are in Phase 3 clinical trials, all of which

range from being 13- to 23-valent vaccines.

Clinical development of 12 vaccine candidates has become inactive or been discontinued in the last
10 years (Table 10). Research on several vaccine candidates became inactive after Phase 1 trials. For
example, PnuBioVax, a toxoid vaccine which aimed to provide protection against all S.
pneumoniae serotypes and a >95% reduction in production costs compared to PCV13; however,
there has been no further research since Phase 1 trials in 2016 (NCT02572635). GSK2189242A
conjugate vaccine was discontinued during Phase 2 trials (NCTO0307528) to move towards the 10-
valent (PCV10) and 13-valent (PCV13) vaccines.
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The PCV10 and PCV13 vaccines are safe, effective pneumococcal polysaccharide-protein conjugate
vaccines that have been available since 2009 (36). Another 10-valent PCV vaccine, (with overlapping
serotypes with PCV10 and PCV13) was prequalified by WHO in December 2019 (37), and a 23-valent
pneumococcal polysaccharide vaccine (PPV23) is licensed for use in adults (38, 39). These vaccines
are highly effective against invasive pneumococcal disease (IPD) and provide some protection against
pneumonia. Current vaccines against S. pneumoniae have been highly effective in reducing the
prevalence of drug-resistant infections. Five years after the first PCV was used in the USA, IPD caused
by multidrug-resistant (MDR) strains in children under age 2 decreased by 84% and penicillin-resistant
IPD in adults over 65 fell by 49% (79). In South Africa, the use of PCV was related to an 82% reduction in
the rate of penicillin-resistant pneumococcal disease in children, and a 47% reduction in disease caused
by penicillin-susceptible strains (40).

The high cost of vaccines against S. pneumoniae is a significant barrier to uptake and worldwide
coverage is approximately 40% of the target population (1-12 months of age) (47). Although there are
more than 100 S. pneumoniae serotypes, most strains responsible for disease are covered by currently
available PCVs. Research is now aimed at reducing the cost of manufacture and increasing serotype
coverage (12).

2. Results

19



'sjonpoud 1ea1dojolg 1941yz utb3uoyd :MSHZ {S910ISaA aueIquIBW JdIN0 [SAINO ‘WalsAs Sunpuasald uadijue aidinw :S4vIN

suo110a4ul Julof o138yiso.d pue suonoajul Ateuowind ‘elpaw Si330 se yons

aAIJOY wop3uly payun 103085 9)eAlld $90UB10s01g XAlawele)) SUOI}09JuUl pPajelpaw-wWiyolq 1el4a)oed Jsulede aulddea dl3soude-uagoyied LOE-XLIND
umouyun epeue) 10}99$ 9)eAld XxeAnud umousun XeAnud
BN}y vsn 10}095 9)eAlld XeAllle|y umouxun LOXAIN
anI}OY uedep 103095 9)eAld xepeueH umouxun aUI20eA |BI20J0WNBUY
anIjoY euly 10}08S 9)eAlld JBAOUAS umouxun 2UI20.A |B220J0WINBUY
BN}y vsn 10}095 9)eAlld $92UB10501g 1qWI0IqY umouun 3U[D0BA |E22020WNBUY
BAIOY vsn 10}095 9)eAlld solznadelday] 1e1s)iom a1e3nfuod ‘jiungng aUI20eA |BI20J0WNBUY
aAljoeU| puejazimg 101085 9)eAlld XI3BWOIA umouxun aUI20eA |BI20J0WNBUY
anIJoY vsn 10}08S 9)eAlld a)Aoxep JusjeA OE< uonelauasd-)xau ‘a1ednfuod ‘jungns dX-XVA
aAI}OY vsSn 103085 8)eAlld a)Aoxen JualeA-¢ ‘e3ednfuod ‘jlungng ¥Z-XVA
(€L AOd ‘L1

umouun eulyd 10}09S 9)eAlld yosljolg J2BAOUIS a1e3nfuod ‘jiungng ‘L 6LINYD) ADd Judlep-gL
aA1}oY elysny J10)09S 9)eAlld SaulodeA BWWen umouxun aUlo0eA |B220J0WNAUY

Aoy uspamg 103085 9}eAlld SaUID2EA BUID0INT JueUIGUIODA] ‘HUNANS aulooeA |B22020WNAUY
(ADd) duIdoen ayednfuod

a1y eulyD 10}09S 3)eAld MSH4Z a1e3nfuod ‘yiungng Jeasooownaud jusjep-g|
(uolyesauad-ixau) 308foud

umouyun VSN 10}09S 8)eAld x13ouagolisy umouxun yoJleasal apjuownaud g
(uoljelauagd-ixau) y08foid

aAIOY VSN 101098 81eAlld XeAlULY wojie)d SdyIN ‘Hungng yoJleasal apjuownaud *§

suadijue paAtasuod Ajydly
a1y uspamg 10}09S 8)eAlld 20Ud10s01g elaqy puE ]aA0U UM Palelodap ale SAINO aJ4aym wioleld yy3g ‘Hungng aUI00eA 1822000WNaUY

snjejs AjIAnoy

Josuods jo Ai3uno)

2dA3} Josuodg

Jadojanaqg

yoeoiddy

aulodeA 3)epipued

‘apiuownaud sno2020jdalys Jo) aunadid yuswdojanap jealundaud ‘g a1qe|

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis

20



£LCS/10-¢0 eweyd
-61L0CI¥1D opuigouny
4 elpu| 10109S 9)eAlld  ‘yoajolg auadia] |edajualed onoejAydoud 93e3n[uod ‘jungng apjuownaud °g ADd U3JeA-G L
90£86€¥0LON €310y 1B21W3YD MS
819€835¥0LON Jo anjgnday /90Us0s0lg MS ECIREL
4 ‘aouel 10}99S 9)eAld ‘Inajseq youeg |eJajualed onoejAydold 21e3n[uod uorjelauad yxau ‘Hungng apjuownaud °g DVAAMS ‘2020dS
LaAid pue Qiyd
"ydod sujajo.d Jueuiquiodal paulquiod
9269+ 10LON 3ulA1aed su1ooen uisyold Jusjealy (S8) (AIdd) duidoen uigyold
4 aouel 10}99S 9)eAld inajsed youes |eJajualed onoejAydold ‘aul00eA 1e220%0wnaud paseq-uiaodd apjuownaud *§  JUBUIqUIOJBI |EII0I0WINBUY
LL£E00/S0
/eL0T/1410
4 elpu| 10}99S 9)eAld J8)0!g eadeuey |edajualed onoejAydoud ASdd 1usiea-| | a1e3nfuod Jungng apjuownaud °§ 2eA0ONN
061891L70LON awyoq
4 vsSn 101095 8)eAlld 2 dieys yoda umouxun onjoejAydoly 91e3n[uod ‘Jiungng apjuownaud *§ 9LLA ADd Jusieahiod
¥86/9%S0LON 2310
4 jo ongnday 10}99S 9)eAld wayD 7 umousun onoejAydoud 23e3n[uod ‘jungng apjuownaud '§ ADd JusjeAlnn
¢0CE08E0LON uedep eulleyd sejoisy
4 ysn 10}99S 8)eAldd IXeAluly leJajualed on3oejAydold 8U|20BA S4VIN 1B22020wNnaud ‘Jungng apjuownaud g CLLEdSY
666167C0LON A3ojouyoasiolg
€ eulyn 10)09S 8)eAlid leyulpy 3uifleg leJdajualed on3oejAydoly 93e3nfuod ‘Jiungng apjuownaud '§ ADd WuBleA-E L
€ elpu| 101095 8)eAlld ‘3 1eai3oj01g leJdajualed on3oejAydoly 9)e3nfuod ‘Jiungng apjuownaud '§ (paglospe) ADd JUBleA-T |
leannasewleyd
CCGLSEYOLON -0lg nyzaj (ADd) dudden s3e3nfuod
€ eulyn 10}99S 8)eAldd 1941yz7 3uilleg |edsjualed onoejAydoud 23e3n[uod ‘Hungng apjuownaud °§ 1es0090wnaud Jusjep-G|
Jealinaoew.ieyd (ECASdd)
8¥¢8.T¥01ON -0lg nyzal au1o0eA aplieyadeshjod
€ eulyd 10}99S 9)eAlld 1941yzZ 3uilleg |eJajualed umousjun jungns apjuownaud °g |eas0o0wnaud jusjep-gg

Josuods

9dA} uosuodg

uoljesjsiuiwpe

Jadojanaqg Jo ajnoy

oynadeuayy
/2130e1Aydouy

yoeouddy

(s)ua3oyjed 3a8.1e]

2UuI29eA d)epipue)

sjel3 jeajun]d SuioSiapun Ajaaijoe sajepipued

‘apjuownaud sno2020)dalis Jsuiede sjeld) jeaiund Suiosiapun AjaAljoe sajepipued aulooea Jo) aunadid Juawdolaasap jesiund ‘4 a1qe|

21

2. Results



41" (d0Q) 483us)
-00000030dd Axsiwayn
e/t eqn) JlWapeoy Jejnosjowolg Jejnosnwediu) on3oejAydoly 91e3nfuod ‘Jiungng apjuownaud '§ (1-ZNOA) LADd
YL
J0 uoneAlloe y3noayy Aoeowys aniyosjoud
pue Ayolusdounwwi sy} 9dueyuS Sal38I0W
pidn pue ‘sutejosdodi) a.e ‘g L0 S pue
0812 dS ‘sutsyoid ay3 jo om] "susdijue
L19G66L0LON §30UBosolg Buneinwis-/ Ly 1ed2020Wnaud 881y} 801¢C
€ vsSn 10}99S 9)eAlld £990U30) umousun UMouNUn  3UlUIBIUOD ASdd V “JuBulquodal ‘Jungng apjuownaud °g 'ZL6L '8%1L0dS ‘700-NID

Josuods

Jo Aiyunop adA} uosuodg

uoljesjsiuiwpe

Jadojanag Jo ajnoy

o1ynadeuayy

/2130e1Aydouyg

yoeouddy

(s)ua8oyjed jas.ie]

2UuId2eA d)epipue)

panuijuossip 1o Jusawdo)arap aAIoe Japun J1a5uo] ou sajepipued

‘apjuownaud sn22020)dalis ysuiede Juswdo)aasp aAI3OR Japun 1a3U0) Ou sajepipued aulooeA Joj aunadid Juswdojansp jesiund oL algel

‘waysAs Funuasaud usfiue ajdinw :S4v|A ‘dnoln 9a301g JeuonieN eulyd :nHgND

8G€0€8¥0LON €3.10%}
L jo orjgnday 103085 91eAld soiojo1gn3 umouyun umouyun aje3nfuod ‘3iungng apjuownaud s GLADdNd
(DENO)
103035 9)eAlld dnoun 29019
L eulyn 101085 91eAlld Jeuonen euyy umouyun umouyun a1e3nfuod ‘3iungng apjuownaud s ADd JUdleA-€L
uoIUBARId pue
jo4ju0Q aseasiq (Ad8d)
09%/80%010N 10} J93U8) auooeA |eadodownaud
L eulyy 101088 91eAlld  UBUDH ‘ouigue) Jelaiuaied onoejAydoud Adgd apjuownaud g paseq-ula}old
CLLOOLYOLON
L euly) 103085 91eAlld oujgue) umouxun o130e1jAydoud a1e3nfuod ‘yiungng apjuownaud g ADd JU3JeA-EL
6G-6€0500
-0c0¢ Loelpn3
4 vsSn 103085 9}eAlld 19Z44 umouxun onoejAydoud umouxun apjuownaud g CCHTy890-4d

"apjuownaud sn220203dal3s ysulede sjeld} jeaiuno Suiodiapun AjaAloe sajepipued aupoea Joj auadid yuswdojaasp jea1un) (PanuuoD) 4 d1qe]

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis

22



ploxo} snueja) 1] | ‘403dadau 9x1]-110} 1YL ‘euldoea aplieyooeshAjod jeodosownaud tASdd

9L6€0€C0LON so13ojolg auldoeA
L pueyIazymg 10}99S 9)eAld yoaewwl umouun onoejAydoud aplieyooesAjod jusjeaniy apjuownaud g |eadodownaud syednfuosolg
uejyueing awweJdold
L lizedg Jlwapedy onIsu| umousun umousun umouun apjuownaud °g 3UI20BA B22020WNBUY
$90IAIBS
1821UND NOI¥O
‘3unsuo) ‘wiJdoy
solnadeday | 2I1X0JUOU B OJU| UleJ}S YD) || ¢ 9dAjolss
pJoJXQ ‘YyoJeasay apjuownaud °§ Jo ‘uisAijownaud ‘uixo}
GE92/STOLON 29quIg Jeao0o0wnaud sy} pajein|y “susdiue
L wop3ury payun 10109s @)eAlld  ‘A3ojoigounwiw| 1edajualed a1oejAydoud uiajoJd adiinw 3ulueIu0d BUIdIEeA apjuownaud '§ xeAolgnud
elsny
T68EYSCOLON  ‘wop3uly payun SlileAoN (ADMdS) WNly + auldoea
/L ysn 10}99S 9)eAld 199483| ‘H1Vd |edsjualed onoejAydoud pajealoeul ‘usdoyyed sjoym apjuownaud ‘g 1182 810ym spjuownaud °§
£19€58C0LON apjuownaud °g
/L vsn 101098 9)eAlld  dulddeA xxadoly |eJajualed onoejAydold 11 0} payednfuod HyYNdP ‘snaunp '§ 8ZEOAY
uoluaAald
pue 10Jjuo)
aseas|q 104
869¥¥SC0LON 8JjusQ 101sId
L eulyn J8yio 3uehoey) 3ullleg |edajualed onoejAydoud 23e3n[uod ‘jungng apjuownaud °§ egIADd
vdsq apiuownaud
$N220203da.43s 3ulonNpold s103}09A (ydA| “ues
607€E0LOLDON Ajisaaniun aulooeA 1ydA] "I8s boLIBIUS D]jaUOW]DS D21I3)US S JUBINJIAL
L VSN Jlwapedy 2)e1S eUOZIIY 1810 anoejAydold pajenualie JueuIquiodal )99 3oy apjuownaud °g JUBUIQUIOD3I) ASY Y
LE¥€/800LON vsn H1vd (Vesd ‘d11S 'gsdd) aulooea
L ‘elaysny 101098 9)eAlld  ‘elUISNY eAdUleA JejnasnweJiu| umousun utejo.d paylind/jueuiquodal jungns apjuownaud °g Vade)
(OCAQd) duidoeA
€LE0SSE0LON 91e3n[uod jeooodownaud
4 vsSn 10109S 8)eAlld 19zy4 leJdalualed on3oejAydoly 91e3nfuod ‘Jiungng apjuownaud '§  JUdjEAI}INW USBXB\ OwNaud
(d€¢ pue (VCYC681LEMSD)
8¢G/0€00LON 461 ‘081 ‘v ‘A6 42 '89S ‘¥ 1) AOd AD-Q!Hd/Maiud
C  wop3dury payun 10}99S 8)eAldd MSH JenosnweJju| umousun JusleA-QL AD-AIHd "@3ed3nfuod yungnsg apjuownaud °s /(p1osAjownaud) Aidp

‘apjuownaud sn22020)dal)s ysulede Juswdo)aasp sAl3OR Japun Ja3Uo] Ou salepipued auldooea Jo) aunadid Juswdolaaap jestund (PanuIuod) "L dlgel

23

2. Results



24

Mycobacterium tuberculosis

Vaccines in development Preclinical: 20; Phase 1: 2; Phase 2: 7; Phase 3: 4

Potential target population 1. Avaccine against progression to active
pulmonary TB would target children of
10 years and above and adults with TB
infection.

2. Avaccine against active TB disease and its
recurrence would target people of all ages.

Biological feasibility Against pulmonary TB: medium
Against active TB: medium

Product development feasibility Against pulmonary TB: low
Against active TB: low

Access and implementation feasibility Against pulmonary TB: medium
Against active TB: high

The first vaccine against M. tuberculosis, the Bacillus Calmette-Guérin (BCG) vaccine, was developed
100 years ago. It is the most widely administered vaccine in the world. BCG provides moderate to good
protection against severe forms of TB in infants and young children (averting thousands of paediatric
deaths annually). However, the efficacy of BCG is variable in preventing adult forms of disease and

wanes over time. Moreover, BCG does not reduce transmission of M. tuberculosis. Hence, the use
of BCG in preventing TB in most upper-income countries has been revised and is limited to at-risk
populations. Safe and effective vaccines that prevent TB infection or disease across all age groups are
urgently needed to achieve the goals and targets of the WHO End TB Strategy (42). Drug-resistant TB
threatens TB control globally, with 500 000 out of 10 million total cases resistant to first-line treatment
in 2018 alone. Second-line treatment entails high costs, longer duration, a lower success rate and is
toxic. Model estimates suggest a vaccine could avert 499 000 deaths due to rifampicin-resistant TB
between 2020 and 2035 (43). There are 13 novel vaccine candidates against TB in active clinical trials;
two candidates are in Phase 1, 7 are in Phase 2, and four are in Phase 3, with at least 20 in preclinical
development (Table 11). The vaccines are prophylactic, therapeutic or both (Table 12).

There are seven prophylactic vaccines in clinical trials. VPM 1002 (rBCG) is a recombinant vaccine,
scheduled to complete Phase 3 trials in June 2025 (NCT04351685). This candidate has shown
immunogenicity in both endemic and non-endemic settings. A Phase 2/3 trial for preventing TB
recurrence in treated patients is underway in India. In addition, there are three whole cell vaccine
candidates under development. MTBVAC is the only live attenuated candidate using M. tuberculosis
and is predicted to complete Phase 2a trial by March 2022 (NCT02933281), Phase 3 development is
also underway (NCT04975178). DAR-901 booster is a heat-inactivated non-TB mycobacterial vaccine
which has completed Phase 2b clinical trials (NCT02712424). MIP/Immuvac consists of heat-killed
Mycobacterium indicus pranii and is in Phase 3 trials in India (CTRI/2019/01/017026).

Moreover, M72/ASO1E is a prophylactic subunit candidate consisting of an immunogenic fusion protein
(M72) derived from two M. tuberculosis antigens (MTB32A and MTB39A), and adjuvant ASO1E (44).
M72/ASO1E completed Phase 2b clinical trials in November 2018 and has reported an efficacy of 50%
in preventing active TB over 3 years in adults who were already infected (NCTO01755598). Data on
safety and efficacy in HIV-positive patients are expected in 2023. Phase 3 trials are not anticipated to
be completed until 2028.

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis



One vaccine candidate is both prophylactic and therapeutic; ID93 + GLA-SE. It is a recombinant subunit
vaccine candidate that completed Phase 2 clinical trials in June 2020 (NCT02465216) (45). ID93 + GLA-
SE is composed of four M. tuberculosis antigens associated with either virulence (Rv2608, Rv3619 and
Rv3620) or latency (Rv1813), alongside the adjuvant GLA-SE. A Phase 2a trial is currently underway in
BCG-vaccinated healthy adult care workers (NCT03806686) in addition to a Phase 1 age de-escalation
trial in BCG-vaccinated adolescents (NCTO3806699).

Three exclusively therapeutic vaccine candidates are in active development (Table 12). TB/Flu-04L
is an attenuated influenza virus mucosal vector vaccine, which expresses the antigens Ag85A and
ESAT-6 of M. tuberculosis (NCT02501421). The RUTI therapeutic vaccine is composed of purified
and liposomal cellular fragments of M. tuberculosis and was scheduled to complete Phase 2b trials
in September 2021 (NCT02711735) (46). H56:1C31 is an adjuvanted subunit vaccine that combines
three M. tuberculosis antigens (Ag85B, ESAT-6 and Rv2660c) with the IC31 adjuvant. Early clinical
trials of this preventative vaccine have been completed, showing acceptable safety and immunogenicity
(PACTR201403000464306; DoH-27-0612-3947) (47). Phase 2b trials are projected for completion in
or after December 2024 (NCT03512249).

Eight vaccines that were in clinical trials have been discontinued in the last 10 years (Table 13). These
include the AERAS-422 recombinant vaccine, which experienced safety problems in Phase 1 trials in
2012 (NCT01340820). GX-70 DNA vaccine was withdrawn from trials due to “unconfirmed research
expenses” in 2018 (NCT03159975). The H4:1C31 vaccine showed low efficacy in Phase 2. Nevertheless,
this trial was the first to show that a subunit vaccine could provide some protection against TB (48).
The KCMC-001 DNA therapeutic vaccine began Phase 1 clinical trials in June 2019 but is not currently
under active development. Tubivac (V7) heat-inactivated whole Mycobacterium vaccae cell therapeutic
vaccine completed Phase 3 trials in December 2018; however, follow-up studies are required to confirm
findings of reduced TB-associated weight loss and inflammation (NCT01977768) (49).

Licensed vaccines were outside the search criteria for this analysis, even where the potential for
repurposing against TB is being explored. For example, the BMGF is funding studies of the effectiveness
of revaccination with BCG in preventing pulmonary TB. Mycobacterium indicus pranii (MIP) or Immuvac
vaccine is already licensed for use against leprosy (50). Immuvac uses M. indicus pranii, a live attenuated
non-pathogenic species which is related to M. tuberculosis and which was initially trialled as a candidate
for therapeutic use against TB. Phase 3 trials showed increased side effects despite in vitro efficacy.
Current Phase 3 trials are testing preventive efficacy for exposed contacts (CTRI/2019/01/017026).

One of the multiple challenges is that the vaccine would need to be administered to adults and adolescents,
who are outside the established childhood immunization schedule (37). Scientific challenges include the
lack of validated, predictive animal models of TB infection and disease, few biomarkers that can act as
prospective signatures of the risk of developing TB or as correlates of protection, and an incomplete
understanding of the nature of protective immunity to TB (57). From a developer perspective, vaccine
R&D is an expensive process with long timelines. Industry engagement in TB vaccine development is
low, owing to the lack of market incentives to invest in a disease that is concentrated in LMICs, and
which disproportionately affects the poor (562). However, a therapeutic vaccine against pulmonary TB is
considered biologically feasible (53). Research is focused on novel adjuvants to improve immunogenicity,
decrease the required dose of antigen, ensure targeted delivery and optimize the interaction of the
antigen with the immune system (54).

The fight against TB will likely require more than one type of vaccine, working in multiple ways, to
prevent the establishment of an initial infection (pre-exposure) or to prevent progression to disease
(post-exposure). A vaccine might also serve as an immunotherapeutic agent by shortening TB treatment
or reducing the risk of recurrence after treatment completion. The current pipeline of new vaccine
candidates has limited antigenic and immunological diversity to deliver on this need.
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Group B: Pathogens with feasible vaccine candidates
in late-stage clinical development

Extraintestinal pathogenic Escherichia coli (EXPEC)

Vaccines in development Preclinical: 4; Phase 1: 1; Phase 2: 2; Phase 3: 1

Potential target population 1. A vaccine with 5 or more years of efficacy
against invasive sepsis might target infants
and older adults.

2. A vaccine with 2 or more years of efficacy
in preventing UTI could be given to high-
risk populations (those with recurrent,
complicated or catheter-associated UTI).

Biological feasibility Against UTI: low
Against sepsis: medium

Product development feasibility Against UTIl: medium
Against sepsis: high

Access and implementation feasibility Against UTIl: medium
Against sepsis: medium

Four vaccine candidates against ExPEC were identified in preclinical development (Table 14). Of these,
only one targets both uro-pathogenic E. coli (UPEC, a form of ExPEC) and ETEC, and another E. coli
and K. pneumoniae.

Four active vaccine candidates against ExPEC are in clinical trials (Table 15). EXPEC9V is a nine-valent

O-polysaccharide conjugate vaccine for which a Phase 3 clinical trial (NCT04899336) began in June
2021 and is estimated to finish in May 2027. ExPEC10V is also a polysaccharide conjugate vaccine in
Phase 1/2 clinical trials (NCT03819049, NCT04306302). The vaccine consists of the ExPEC serotypes
O1A,02,04,06A, 08,015,016, O18A, 025B and O75 separately bioconjugated to the carrier protein,
a genetically detoxified form of exotoxin A (EPA) derived from P. aeruginosa. Research on ExPEC4V has
been discontinued to pursue these higher-valent vaccines. The FimH vaccine candidate is moving into
Phase 2 clinical trials. This vaccine uses FimH, a bacterial adhesin protein as an antigen alongside a
TLR4 (toll-like receptor 4) agonist adjuvant (55). OM-89 is a vaccine directly derived from bacterial cells
consisting of heat-inactivated E. coli membrane proteins derived from 18 different E. coli strains. The

vaccine is currently in a Phase 2 clinical trial (NCT02591901) as immune prophylaxis for recurrent UTI
(56). However, the composition is not yet well characterized (57), and whole cell vaccines such as Uro-

Vaxom and Solco-Urovac are considered to have suboptimal properties.

The relatively low incidence of EXPEC in hospitals makes recruiting for clinical trials for sepsis challenging.

High-risk populations, including women with recurrent UTI, older males undergoing transurethral
prostatic biopsy and adults with urinary catheterization, do not overlap. The target population for a
vaccine needs to be clearly defined but would likely include those at high risk of UTI in clinical settings,
including recurrent UTI, catheter-associated UTI and complicated UTI. Prevention of UTI caused by E.

coli could avoid a considerable amount of antibiotic consumption. In addition, a greater understanding
of the impact of a vaccine targeting E. coli, an integral component of the human microbiome, is
needed.

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis
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Salmonella enterica ser. Paratyphi A

Vaccines in development Preclinical: 4; Phase 1: 1; Phase 2: 1; Phase 3: 1
Potential target population 1-59 months in endemic settings

Biological feasibility Medium

Product development feasibility Medium

Access and implementation feasibility Medium

There are multiple serotypes of S. enterica ser. Paratyphi, with S. enterica ser. Paratyphi A being the
most common. There are no licensed vaccines against S. enterica ser. Paratyphi A.

Four vaccine candidates are in late-stage preclinical development. All candidates are bivalent and target
both S. enterica ser. Paratyphi A and Typhi (Table 17).

Three candidates are in clinical trials. Of these two target only S. enterica ser. Paratyphi A; first, O:2,
12-TT conjugate vaccine, which was shown to be safe and immunogenic in Phase 1/2 clinical trials
but failed to elicit a booster immune response after the second dose (58) and is now in Phase 3 trials.
Second, CVD 1902, which is a live attenuated whole cell vaccine. This candidate completed Phase 1
trials in 2013 (NCT01129453) (59), showing a single dose to be safe and immunogenic. CVD 1902 is
ultimately intended to become part of a bivalent vaccine when combined with CVD 909 to target S.
enterica ser. Paratyphi A and Typhi (58). The bivalent Entervax live attenuated whole cell vaccine targets
both S. enterica ser. Paratyphi A and Typhi, and was scheduled to complete Phase 2b clinical trials in
August 2021 but no updates have been published yet (NCTO1405521) (29).

A vaccine against S. enterica ser. Paratyphi A is likely to be developed and administered as a
combination with a vaccine against S. enterica ser. Typhi. Such a bivalent vaccine would have a better
value proposition than either monovalent vaccine. Structurally, S. enterica ser. Paratyphi A lacks the Vi
(virulence) capsular polysaccharide, a widely used vaccine target. However, recent success in developing
the typhoid conjugate vaccine is encouraging, and suggests a vaccine against S. enterica ser. Paratyphi
A is also possible (37). There are multiple challenges to vaccine development against Paratyphoid. The
burden of S. enterica ser. Paratyphi A and its relationship to the ecology of Typhoid remains poorly
defined. Relatively low incidence would require large clinical trials and/or a human infection model,
which exists but has yet to be used for vaccine evaluation (37, 60). At present, correlates of protection
have not been defined, and small-animal infection models are lacking.

2. Results
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Neisseria gonorrhoeae

Vaccines in development Preclinical: 2; Phase 1: O; Phase 2: O; Phase 3: 1

Potential target population 10-24 years old; populations at risk (men who
have sex with men, sexual workers, transgender)
and vulnerable populations

Biological feasibility Low

Product development feasibility High

Access and implementation feasibility Medium

No vaccines are currently licensed against N. gonorrhoeae; however, one candidate is in Phase 3 of
clinical development. A moderate amount of very early-stage preclinical research in this area was
identified, including two vaccine candidates in late stages of preclinical development.

Evidence suggests that the 4CMenB vaccine, licensed against group B meningococcal infections, also
provides protection from gonorrhoea. The 4CMenB Phase 3 trial (NCT04415424) dates in 2020 were
delayed due to the SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) (67). The
last update in summer 2021 showed it as recruiting. There is a moderate amount of very early-stage
preclinical research in this area and two vaccine candidates in late stages of preclinical development
were identified. Both NGoXIM and dmGC_0817560 NOMYV vaccine candidates use outer membrane
vesicles as an approach.

Biological challenges to vaccine development include the lack of known correlates of protection, lack
of immunity from natural exposure, poor understanding of immunity and the existence of multiple
pathogenic strains, though conserved antigenic targets have been identified (37). A vaccine would ideally
prevent both reproductive health morbidity and AMR associated with gonorrhoea. The disease burden
is high across high- and low-income countries. However, the cultural acceptability of a vaccine against
a sexually transmitted infection may make uptake challenging. A combined N. gonorrhoeae and N.
meningitidis vaccine would improve the value proposition and may address some of the cultural barriers
(12).

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis
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Clostridioides difficile

Vaccines in development Preclinical: 5; Phase 1: 1; Phase 2: O; Phase 3: 1
Potential target population Adults over 45 years of age

Biological feasibility Medium

Product development feasibility Low

Access and implementation feasibility Low

There are five vaccine candidates against C. difficile in preclinical trials, representing a combination of
different approaches that include the MAPS platform, the exome-like bacterial vesicles and the use of
Bacillus subtilis spores as a delivery agent. These are all private sector vaccines (Table 21).

No vaccines are currently available against C. difficile. However, two candidates are in active clinical
trials, both of recombinant vaccines (Table 22). The GSK2904545A recombinant protein vaccine will
complete phase 1in April 2022 (NCT04026009). The PF-06425090 vaccine candidate was fast-tracked
by the US FDA in 2014. However, the Phase 3 trial, which recruited 17 500 patients, failed to meet the
primary endpoint of preventing C. difficile infections, though it did reduce duration and severity of
disease based on secondary endpoints (NCTO3090191) (62-64).

Research on multiple vaccine candidates against C. difficile has become inactive or discontinued in the last
10 years. The Phase 3 trial of ACAM-CDIFF toxoid vaccine candidate, which enrolled 9302 participants,
was terminated in 2018 after interim data showed that it was unlikely to demonstrate prevention of
primary C. difficile infection (NCTO1887912) (65), despite having shown good immunogenicity and
safety. This was the first global Phase 3 study to evaluate a vaccine against C. difficile infection, and
the results of the trial highlighted the difficulties associated with vaccine development for bacterial
nosocomial infections. Participants were over 65 and many had comorbidities, which may have affected
their immune response. Participants were also C. difficile naive and at high risk for C. difficile. However,
the vaccination of a large cohort was required given the unpredictable epidemiology. Another candidate,
VLA84 recombinant vaccine, completed Phase 2 trials INCT02316470) in 2015 (66). This vaccine lacks
several neutralizing epitopes, does not target host receptor-binding regions and is unlikely to cover all
variants of TcdB. However, it could progress to Phase 3 with a suitable partner, but there has been no
activity since 2018.

C. difficile infection is hard to treat effectively with antibiotics and therefore alternative management
strategies are much needed. However, designing clinical trials is complicated as the end point, diarrhoea,
is hard to assess, especially in elderly patients, and those who areiill. This is because, in these populations,
the incidence of diarrhoea might be high and due to multiple causes, which makes attributing episodes
to C. difficile infection difficult. The role of the microbiome in modulating the immune response to
vaccines is not well understood. In addition, faecal microbiome transplants and biotherapeutic agents
have shown recent success against C. difficile and may reduce the need for a vaccine. However, access
to these interventions is still largely limited to high income settings. Vaccines may target prevention of
recurrence of C. difficile or prevention of first infection, which are very different. Current data from
vaccine candidates in clinical development suggest that it may be possible to reduce symptomatic
disease, but C. difficile may still persist in the host and be shed (67). An antibody to C. difficile toxin has

been successfully developed, suggesting that if a vaccine could deliver local antibodies in the gut, it may
be successful.

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis
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Group C: Pathogens which are feasible, but challenging as targets for
vaccine development

Enterotoxigenic Escherichia coli (ETEC)

Vaccines in development Preclinical: 10; Phase 1: 4; Phase 2: 2; Phase 3: 0

Potential target population 6-24 months old in endemic countries and
international travellers

Biological feasibility Medium
Product development feasibility High
Access and implementation feasibility Medium

Ten preclinical vaccine candidates were identified against ETEC. Six of these solely targeted ETEC. The
other four target different pathogen combinations, including ExPEC, S. aureus, C. jejuni or S. flexneri
(Table 24).

Six vaccine candidates against ETEC are currently in active in clinical trials (Table 25). Half of these also
target Shigella spp. The most advanced vaccine candidate, ETVAX, is an inactivated whole cell vaccine
composed of four E. coli strains administered with dmLT as both immunogen and adjuvant (69) (Phase
2b, PACTR202010819218562).

Four vaccine candidates against ETEC have reached clinical trials and been discontinued or become
inactive over the last 10 years (Table 26). For example, TyphETEC-ZH9, which was being developed
against typhoid and ETEC, passed Phase 1 but has returned to preclinical development to include
Shigella as a target. VLA1701, an inactivated Vibrio cholerae bacteria and recombinant cholera toxin B
subunit completed Phase 2 in 2018 (NCT03576183) but is no longer listed on the developer’s pipeline.
In addition, ACE527-102 is a live attenuated vaccine combining three strains of E. coli that collectively
express coli surface antigens CS1, CS2, CS3 and CS5, colonization factor antigen | (CFAI) and the
heat labile toxin (LT) B subunit (70). Despite showing significant protection in combination with dmLT
as an adjuvant and an antigen (70), ACE5327 did not meet the primary end point of protection against
moderate/severe diarrhoea and development is currently inactive (77) (NCTO1060748, NCT01739231).

The B-subunit/whole-cell cholera vaccine (BS-WC) has been shown to provide 3 months of partial
protection against some strains of ETEC (72). Challenge with wild-type ETEC provides nearly complete
protection from reinfection resulting in severe diarrhoea. However, precise correlates of protection have
not been established, and these levels of protection have not been replicated by a vaccine (70). Despite
the high diversity of ETEC strains, a vaccine targeting LT toxoid and CFAs could cover up to 80% of
disease-causing strains (73). There are multiple different markets for an ETEC vaccine, including infants
in LMICs, travellers and the military. The development of a vaccine covering ETEC in addition to other
pathogens may further improve its value proposition.

2. Results
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Klebsiella pneumoniae

Vaccines in development Preclinical: 5; Phase 1: 1; Phase 2: O; Phase 3: O

Potential target population Immunocompromised patients, patients
requiring mechanical ventilation or urinary
catheters, patients in long-term care facilities,
presurgical patients, and other patients at high
risk of infection or potentially neonates via
maternal immunization

Biological feasibility Maternal immunization: low
Patient immunization: medium

Product development feasibility Maternal immunization: medium
Patient immunization: medium

Access and implementation feasibility Maternal immunization: medium

Patient immunization: medium

One unlicensed vaccine candidate against K. pneumoniae is in clinical trials. Five preclinical K.
pneumoniae vaccine candidates were identified using different technologies, including semi-synthetic
conjugation, MAPS platform, Syntiron’s Alloy platform and the inactivated whole cells (Table 27).

Phase 1/2 trials were recently initiated (NCT04959344) (Table 28) to assess the tetravalent bioconjugated
vaccine candidate, KlebV4, with and without the ASO3 adjuvant. Another vaccine against K. pneumoniae
- MV140 (Uromune), a poorly characterized vaccine comprising heat-killed bacteria - is in late-stage
clinical trials (Phase 3: NCT02543827; Phase 2: NCT04096820). Uromune was excluded from this
analysis as it has been licensed in Spain since 2010. Moreover, Uromune was recommended in the
2019 European Association of Urology guidelines as immunoactive prophylaxis to reduce recurrent UT],
and retrospective studies suggest it may reduce recurrent UTI by up to 90% compared with antibiotic
prophylaxis (78).

K. pneumoniae has a high propensity to acquire resistance genes and spreads easily, in comparison with
other Enterobacterales. This may be an argument for considering vaccination against certain strains. A
capsular polysaccharide vaccine was developed three decades ago but failed in human trials (79). Four
of the 12 O serotypes that exist for K. pneumoniae would encompass 80% of clinical strains (80-82). K.
pneumoniae has been associated with a high burden of neonatal sepsis in low-income countries. Clinical
trials involving neonates are challenging, and commercial attractiveness is limited (37). In HICs, K.
pneumoniae infections are most often hospital acquired. The lack of a clearly defined target population
makes recruitment for clinical trials and the cost-effectiveness case for a vaccine challenging (72).

2. Results
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Non-typhoidal Salmonella

Vaccines in development Preclinical: 5; Phase 1: 1; Phase 2: O; Phase 3: O
Potential target population 1-59 months in endemic settings

Biological feasibility Medium

Product development feasibility Medium

Access and implementation feasibility High

Five vaccine candidates are in preclinical development against non-typhoidal Salmonella (NTS) (Table
29). Two of these candidates are trivalent and target S. enterica ser. Typhimurium, Enteritidis and Typhi,
including INTS-GMMA and TCV vaccine candidate, which was planned to begin Phase 1a in 2021 in the
United Kingdom and Phase 2 in Kenya in 2022, however no updates have been published. In addition,
there are two bivalent vaccines under development.

Currently no vaccines are licensed against NTS, and only one vaccine is currently in clinical development.
CVD1000 is a trivalent vaccine candidate that targets non-typhoidal S. enterica ser. Typhimurium,
Enteritidis and Typhi. The Phase 1 trial is scheduled for completion in September 2022 (NCT03981952).

Despite a relatively high burden of both disease and associated mortality, and the biological feasibility
of a vaccine, less investment has been made to date in vaccines to prevent NTS compared with typhoid
fever (S. enterica ser. Typhi), (12). The majority of invasive NTS disease occurs in sub-Saharan Africa
and is mostly caused by two serovars; S. enterica ser. Typhimurium and Enteritidis (83, 84). A vaccine
active against these serovars would therefore cover the majority of pathogenic strains. The main market
would be populations in endemic areas, which tend to be low-resourced, and have limited ability to pay
for a vaccine without support from Gavi, the Vaccine Alliance. Transmission of NTS has a significant
livestock and foodborne component, which may affect the impact of a human vaccine (85).

2. Results
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Campylobacter spp.
Vaccines in development Preclinical: 4; Phase 1: O; Phase 2: O; Phase 3: 0
Potential target population Infants of 6-12 months and international
travellers
Biological feasibility Medium
Product development feasibility High
Access and implementation feasibility Medium

Four vaccine candidates against Campylobacter spp. were identified under preclinical development, all
of which aim to protect against C. jejuni alone or with other bacteria such as ETEC or S. flexneri (Table
31).

No vaccines are licensed against Campylobacter spp., and no vaccines are in active clinical trials.
One vaccine which was in clinical trials is no longer being actively researched; the Capsule conjugate
Campylobacter vaccine (CJCV), was deemed safe after a Phase 1 clinical trial in January 2016
(NCT02067676). However, the same trial reported CJICV to be only weakly immunogenic, likely due to
trial design that used only two dose regimens rather than the three used in previous studies.

Although, there are no licensed vaccines against Campylobacter spp., a conjugate vaccine developed
for use in cows has shown it to be a viable vaccine target. Moreover, an ideal candidate would cover
Campylobacter coli as well as C. jejuni as both show resistance to fluoroquinolones and macrolides
(88). Though 35 serotypes of C. jejuni have been identified, the majority of human disease is caused
by 8-10 of these, making an effective vaccine with broad protection possible. In addition, a conserved
heptasaccharide shared by all strains of C. coli and C. jejuni has been identified (37).

A vaccine would have multiple markets, including travellers and military personnel, among others in
HICs, in addition to those living in LMICs endemic for Campylobacter. Though the latter may be less
able to afford a vaccine without external support, such as Gavi funding. Campylobacter is the second
most common cause of foodborne illness in the USA, often in children under 5 (89), and is the leading
cause of gastroenteritis and associated morbidity in HICs. A better understanding of the Campylobacter
burden and transmission in LMICs, through animal, environmental and human pathways, is needed to
inform the value of a vaccine in these settings (72).

2. Results
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Shigella spp.

Vaccines in development Preclinical: 10; Phase 1: 3 against S. flexneri,
0 against S. sonnei, 3 against both; Phase 2: 1
against S. flexneri, 1 against S. sonnei; Phase 3:
0

Potential target population 1-12-month-old infants in Shigella-endemic
countries. Travellers and military personnel may
also be targeted.

Biological feasibility Medium

Product development feasibility High

Access and implementation feasibility Medium

Ten vaccines against Shigella spp. are in preclinical development. The majority of these are multivalent
and incorporate other pathogenic targets alongside Shigella (Table 33).

Currently no licensed vaccines protect against Shigella; however, Shigella vaccines are an active area
of research, with eight vaccine candidates in active clinical trials. ShigETEC, targets ETEC, S. flexneri
and S. sonnei and was scheduled to start Phase 1 trials in 2021, however, these trials are on hold due to
the COVID-19 pandemic (75). Results of the Phase 1a clinical trial will permit selecting the optimal dose
and interval for administration in a Phase 1b trial in endemic populations in Bangladesh. In addition,
CVD 31000 is a bivalent live attenuated vaccine using the S. flexneri 2a live vector expressing ETEC
antigens which targets ETEC and S. flexneri. Phase 1 clinical trials were delayed due to the SARS-CoV-2
pandemic but began in June 2021 and are predicted to be completed in June 2023 (NCT04634513).
Shigella4V is a monovalent vaccine candidate against S. flexneri (90), which was safe and immunogenic
in a human challenge model (27). It is currently in Phase 1/2 clinical trials in Kenya in an age escalation
study, scheduled for completion in July 2022 (NCT02388009).

Research on seven vaccine candidates against Shigella has become inactive or been discontinued
over the past 10 years. Flexyn2a, a monovalent bioconjugate vaccine has been inactive since Phase
2b trials in 2017 to pursue the four-valent Shigella4V. Similarly, the GVXN SD133 conjugate vaccine
was discontinued in 2010, after a Phase 1 trial INCT01069471), to develop the Flexyn2a vaccine. CVD
1208S live attenuated vaccine was abandoned due to high levels of reactogenicity in the Phase 2 trial (92)
(NCT00866242, NCTO0866476). However, this experience has led to more recent candidates including
CVD 31000. WRSS1 failed to achieve full immunogenicity in 2016 Phase 2 trials (NCT01813071).
However, research has continued in the form of the WRSS2/WRSS3 live attenuated candidate (93)
(NCT04242264). An Sf2aWC + dmLT inactivated whole cell vaccine was withdrawn during Phase 2 trials
and discontinued due to lack of funding (NCT03038243) (94).

It is encouraging that Shigella vaccine candidates providing coverage against S. flexneri 1a, 2a, 3a,
and 6, and S. sonnei are moving into clinical trials, and research suggests that a four-valent conjugate
vaccine could cover more than 80% of strains causing disease (95). However, uncertainties remain as
to whether conjugate vaccines will provide protection to the target age group of children under 3 and
in pristine subjects, although the use of adjuvants is being explored in response to this issue (37). Most
of the target population is in lower-resourced settings, which would require Gavi support to finance
uptake. Travellers, men who have sex with men (MSM), and military personnel from HICs, however, may
also present markets with financial resources to pay for a vaccine. The inclusion of multiple antigens,
not only against Shigella but also ETEC, would improve the value proposition of a vaccine. With many
candidates in clinical development, a marketed Shigella vaccine is likely but not earlier than in the next
7-10 years (12).

2. Results
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Group D: Pathogens which currently have low feasibility for
vaccine development

Acinetobacter baumannii

Vaccines in development Preclinical: 5; Phase 1: O; Phase 2: O; Phase 3: 0

Potential target population Immunocompromised patients, patients
requiring mechanical ventilation or urinary
catheters, patients in long-term care facilities,
presurgical patients in high-risk settings, other
patients at high risk of infection

Biological feasibility Low
Product development feasibility Medium
Access and implementation feasibility Low

While no vaccines are in clinical development against A. baumannii, five vaccine candidates are in
preclinical development. Of these, two are inactivated whole cell vaccine candidates, one of which
additionally targets P. aeruginosa and K. pneumoniae, and one is a conjugate vaccine which additionally
targets Streptococcus agalactiae (Table 36).

Multiple candidates have been characterized in preclinical studies based on recombinant proteins,
inactivated/attenuated whole cells and surface polysaccharides that have not made it to the clinical
stage (37, 100). The lack of vaccines against A. baumannii in clinical development might be explained
by the biological complexities, which makes it scientifically challenging to arrive at a sound concept
for an A. baumannii vaccine. In addition, there are number of challenges along the pathway to clinical
development. Even if one of the candidates in preclinical development made it to the clinical stages
of development, large efficacy trials would be required due to low disease prevalence in vulnerable
populations (72). The target population includes critically ill patients with multiple comorbidities and/or
a compromised immune response, and who are often in intensive care. All of this makes it hard to recruit
subjects for such trials and complicates the establishment of appropriate efficacy end points (700, 101).
In addition, there is currently no precedent for the routine use of vaccines to prevent hospital-acquired
infections in high-risk populations. It is unclear when such a vaccine would need to be administered to
be effective if a patient were hospitalized.

2. Results
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Pseudomonas aeruginosa

Vaccines in development Preclinical: 4; Phase 1: O; Phase 2: O; Phase 3: 0

Potential target population Patients with the following risk factors: burns,
neurological conditions, chronic pulmonary
disease, cystic fibrosis, invasive procedures,
prior colonization and patients undergoing
antibiotic treatment

Biological feasibility Medium
Product development feasibility Medium
Access and implementation feasibility Low

No active candidates are in clinical development against P. aeruginosa. The analysis identified four
active P. ageruginosa vaccine candidates in the later stages of preclinical development. These use a
range of technologies, including the MAPS platform (702), phage-based vaccine, a live attenuated
Salmonella strain and inactivated whole cell vaccine. In addition, multiple promising vaccine candidates
were identified in earlier stages of preclinical development.

Several vaccines have advanced to clinical trials and failed over the past 3 decades (79, 703-105). In the
last ten years, VLA43 (IC43) completed a Phase 2/3 clinical trial INCT01563263) and was discontinued
as it failed to reduce all-cause mortality (105). A P. aeruginosa vaccine that incorporates 8 of the
16-20 different P. aeruginosa International Antigenic Typing Schema (IATS) subtypes could provide
approximately 80% coverage of clinical strains (26).

However, similarly to Acinetobacter infections, the incidence of P. aeruginosa infections in hospitals,
and the risk factors and co-morbidities associated with these infections make it hard to conduct a
clinical trial without specifically targeting high-risk populations. These high-risk populations include
those in intensive care units (ICUs), nursing homes or long-term acute care facilities, or patients who
are immunosuppressed due to surgery or immunotherapy (37). This makes clinical development very
challenging. For instance, one of the main difficulties facing the VLA43 trial was defining end points.
Impact on mortality was hard to demonstrate in critically ill patients, many of whom were receiving
antibiotics, particularly without selecting a group of patients at high risk of P. aeruginosa infection. The
administration of a vaccine at ICU admission left limited time for a protective immunological response. A
vaccine-based approach to P. aeruginosa prevention may be more effective if at-risk target populations
can be identified prior to ICU admission (e.g. patients with cystic fibrosis are at risk of P. aeruginosa
infection and may be a good target group) (105).

2. Results
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Enterobacter spp.
Vaccines in development Preclinical: O; Phase 1: O; Phase 2: O; Phase 3: O
Potential target population NA*
Biological feasibility NA*
Product development feasibility NA*
Access and implementation feasibility NA*

*Not included in feasibility assessments cited for other pathogens.

Enterobacter spp. were identified by the Wellcome Trust as not well suited for vaccine development due
to their relatively low incidence, morbidity and mortality (72). The global burden of bacterial AMR study
however, estimates that Enterobacter spp. are responsible for between 100 000 and 250 000 deaths
associated with AMR globally in 2019 (5), however, the challenge remains to identify the appropriate
target population for a vaccine with high enough disease incidence.

Preclinical pipeline: None

Clinical pipeline: None

Candidates actively undergoing clinical trials: None

Candidates no longer under active development or discontinued: None

2. Results
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Enterococcus faecium

Vaccines in development Preclinical: O; Phase 1: O; Phase 2: O; Phase 3: O

Potential target population Patients in intensive care, immunocompromised
individuals, patients with comorbidities and
patients with foreign bodies

Biological feasibility Low
Product development feasibility Medium
Access and implementation feasibility Low

No vaccine candidates against E. faecium are currently in preclinical or clinical trials. Several capsular
polysaccharides and surface-associated proteins have been described as potential antigens (706);
however, these have not yet arrived at late stages of preclinical research. E. faecium was also identified
by the Wellcome Trust as not well suited for vaccine development due to comparatively low incidence,
morbidity and mortality (72). In addition, there are multiple factors that make vaccine development
against E. faecium challenging. Natural immunity response to the switch from commensal to pathogen
is not well understood (707), correlates of protection are lacking, and the target population for a vaccine
is not clearly defined (12, 37). E. faecium infections have relatively low incidence and tend to affect
highly immunocompromised patients with a range of co-morbidities, which would be challenging to
target for vaccination (72). Recent estimates the burden of E. faecium deaths associated with AMR at
100 000-250 000 globally in 2019 (5).

Preclinical pipeline: None

Clinical pipeline: None

Candidates actively undergoing clinical trials: None

Candidates no longer under active development or discontinued: None

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis



Staphylococcus aureus

Vaccines in development Preclinical: 14; Phase 1: 1; Phase 2: 1; Phase 3: O

Potential target population Infants 6-59 months old, those over 60 years
of age, immunocompromised patients and/or
suffering from comorbidities, hospital patients
undergoing elective surgery or other invasive
procedures with high risk of S. aureus infection.
Those with recurrent skin and soft tissue
infections are also a possible target population.

Biological feasibility Very low
Product development feasibility Medium
Access and implementation feasibility Medium

*Not included in feasibility assessments cited for other pathogens.

There are currently 12 active preclinical vaccine candidates against S. aureus, these include a peptide-
based vaccine that targets ETEC and ExPEC and all the others (n = 11) that are specific to S. aureus.
Research is being pursued both by academic and private sectors (Table 39). A seven-antigen (five-
protein) toxin-based vaccine, IBT-V02, is planned for a Phase 1 clinical trial in 2022 (37) and is likely to
target prevention of recurrent skin and soft tissue infections (SSTIs).

Currently no licensed vaccines prevent S. aureus infection exist however, two vaccine candidates which
specifically target S. aureus are in clinical trials. The most recent is the GSK3878858A recombinant
protein vaccine that targets recurrent skin infections. It is currently in a Phase 1/2 trial and enrolment is
expected to be completed in December 2022 (NCT04420221).

Despite relatively high industry investment, many vaccine candidates against S. aureus have been
developed and failed (Table 41). Over the last 10 years, nine vaccine candidates in clinical development
have been discontinued or research has become inactive, mostly in Phase 1 clinical trials. For example,
the recombinant toxin vaccine STEBVax (IBT-VO1) (NCT00974935) was discontinued in order to work
towards the IBT-VO2 pentavalent toxoid vaccine, currently in preclinical stages. Also, AVO0328, a
partially de-N-acetylated poly-N-acetyl glucosamine polymer that targeted a variety of bacterial
species, including S. pneumoniae and S. aureus, shows no recent activity (NCT02853617). NDV-3A
recombinant vaccine failed to prevent nasal acquisition of S. aureus in military recruits during Phase
2a trials (NCT03455309) (108). The four-antigen candidate SA4Ag was terminated during Phase 2b
(NCT02388165) in 2019 due to futility (73). Phase 3 failure also occurred in the V710 IsdB vaccine
(NCTO0518687), as trials were terminated when interim analysis reported increased mortality and
adverse side effects in vaccine recipients who developed an S. aureus infection. Another Phase 3
candidate against S. aureus, CP5-Epa and CP8-Epa vaccine, outside of the date range of the present
review, was shown to confer partial immunity for approximately 40 weeks but is no longer under
development (7109).

At present, it is unclear what antigen targets would allow a vaccine to provide protection against S.
aureus infection (13) In addition, correlates of protection are lacking, and vaccines that have shown
protection in animal models have failed in clinical trials (37, 7170, 711). Multiple candidate monoclonal
antibodies against S. aureus have failed in clinical trials (772). Finally, S. aureus causes a diverse range
clinical syndromes, including bacteraemia, skin infections, pneumonia and others, and it is not clear
whether a vaccine against one would protect against others (113).

2. Results
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Helicobacter pylori

Vaccines in development Preclinical: 6; Phase 1: O; Phase 2: O; Phase 3: 0

Potential target population 1. A prophylactic vaccine given to children
before H. pylori is acquired at a young age;
or

2. A therapeutic vaccine given to adults who

are infected and therefore at risk of cancer
associated with H. pylori.

Biological feasibility Low

Product development feasibility High

Access and implementation feasibility High

Six vaccine candidates against H. pylori are in preclinical development, with active development occurring
on at least two (Table 42). However, the approaches pursued are similar to some that have previously
failed, and there is no evidence that these are more likely to succeed (37). The two candidates in active
development are the surfome vaccine and the gastric cancer vaccine. A few of the potential antigens
being explored in preclinical development against H. pylori and others which have been explored in
mice, include yeast expressing ureB and ureA (715), Listeria expressing H. pylori antigens (116), a cyclic
guanosine monophosphate-adenosine monophosphate adjuvanted urease vaccine (777) and OMVs (1718).

Currently no H. pylori vaccines are in clinical development. Two vaccines have completed Phase 1 or
Phase 1/2 clinical trials in the last 10 years. However, both are inactive or discontinued. Most recently,
the IMX101 vaccine, which targets GGT (gamma-glutamyl transpeptidase) antigens (779), has had no
reports of development since it was completed in 2018 (NCT03270800). Although the results of the
clinical trial were promising, investment has been indefinitely postponed until a strategic partner is
identified.

The sole Phase 3 clinical trial (NCT02302170) was not included in this analysis as it was completed in
September 2008, which is outside the timeframe established by the search criteria. The trial took place
in China, and recruited 4464 children (120), but was ultimately discontinued. The study showed that it is
possible to induce vaccine-mediated protection against H. pylori, although overall vaccine development
was hindered by the lack of known correlates of protection for the pathogen.

Two different H. pylori vaccines are theoretically possible: a prophylactic vaccine given to children
before H. pylori is acquired at a young age, and a therapeutic vaccine given to adults who are infected
and therefore at risk of cancer associated with H. pylori. The long time lag between infection in childhood
and disease in adulthood contributes to the difficulty of vaccine development (12). H pylori infections
affect over 50% of the population globally, with the highest rates concentrated in areas like Asia, where
prevalence is highest. These high rates would facilitate a standard clinical trial design and demonstrate
that there is a large potential market for a vaccine (37).

2. Results
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3. Discussion

AMR is an urgent threat with an increasing impact on global health (4). It is one of the leading
causes of death around the world, with the highest burden in limited resource settings. This
report highlights vaccine candidates in all stages of preclinical and clinical development that
may be available in the future as tools to help combat AMR. The report also discusses some
of the anticipated opportunities and challenges for innovation and R&D in this area.

In the analysis, pathogens in the WHO BPPL, have been broadly categorized in terms of feasibility (Table
44) (based on matching the progression of vaccine candidates in clinical and preclinical development
and assessments of the feasibility of generating a vaccine based on analyses of biological, product
development, and access and implementation feasibility (Table 1; see (26) for full methodology).

Table 44. Summary of pipeline findings and recommendations for pathogens on the BPPL.

Pipeline
Feasibility Description Pathogens Recommendations
Group
Very high AMR priority pathogens Salmonella enterica ser. Typhi Increase coverage of
for which licensed vaccines Streptococcus pneumoniae authorized vaccines in line
already exist o with WHO immunization
Groun Haemophilus influenzae type b targets to maximise impact

A

Mycobacterium tuberculosis

on AMR

Accelerate the development
of effective vaccines against
TB.

High AMR priority pathogens for Extraintestinal pathogenic Accelerate the
which a vaccine candidate Escherichia coli (ExPEC) development of a vaccine
is in late-stage development Salmonella enterica ser. for these pathogens
(Phase 3) and vaccines would be Paratyphi A
Group suitable to target AMR infections

caused be these priority
pathogens in the coming years

Neisseria gonorrhoeae
Clostridioides difficile

Moderate AMR priority pathogens for Enterotoxigenic Escherichia coli Continue the development of
which a vaccine candidate has (ETEC) a vaccine for these pathogens
either been identified in early Klebsiella pneumoniae and expand knowledge of

a clinical trials or been identified . potential for vaccine impact
roup as a feasible vaccine target Non-typhoidal Salmonella and other tools to combat
@ during expert review. Vaccines Campylobacter spp. the AMR threat
may be feasible solutions to Shigella spp.

target AMR infections, with
moderate feasibility of vaccine
development

Low AMR priority pathogens for Acinetobacter baumannii Research and investment
which no vaccine candidate Pseudomonas aeruginosa should explore alternative
has been identified in clinical methods of control,

Group development and therefore Enterobacter spp. including treatments

vaccines are not a feasible
solution to target AMR infections
in the foreseeable future,

hence vaccine development
feasibility is low

Enterococcus faecium
Staphylococcus aureus

Helicobacter pylori

and effective infection
prevention, and should
ensure access to clean water
and adequate sanitation

and hygiene facilities
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The vaccine development landscape in the context of AMR is multifaceted, with candidates against
almost all pathogens in the WHO BPPL in early stages of development (preclinical) and with significantly
fewer candidates in advanced stages of development (Table 45).

There are numerous scientific, technical and economic challenges to vaccine development for many
of these pathogens (Fig. 8). Scientific challenges start in the preclinical phase where the process of
target validation and proof of concept is complex and costly. Clinical assay determination and inter-
individual biological variation bring additional complexity. Further to these challenges, the optimized
vaccine candidate must be pure and delivered at a safe dose (potency), using an appropriate method
of application, with an acceptable safety profile, in addition to having a stable shelf-life and being
commercially viable.

For some pathogens, these challenges are so hard to overcome that other tools could be more appropriate
for their management (Fig. 8). For example, S. aureus is a common commensal organism, which often
colonizes human skin and for which antigen targets are unclear. Even though a large proportion of the
population is exposed to S. aureus as a commensal, no lasting protective immune response is elicited.
This adds to the biological challenge of developing a vaccine (13). Hence, multiple clinical trials have
failed, and animal models have not been predictive of success. Another example is E. faecium which has
a low biological feasibility for vaccine development as the extent of immunity from natural exposure is
unknown and mechanisms of immunity are not fully understood (26).

In addition to the scientific challenges of vaccine development, there is also the long pathway for
approval, which is often associated with uncertainty, high cost and financial risk. Lack of data on the
long-term direct impact of the vaccines on populations adds to this uncertainty. Data is also needed on
the impact of these vaccines on AMR emergence and burden, in the short and long term.

Mortality estimates have been established for many of the enteric pathogens with vaccine candidates
in clinical trials, including ETEC, Campylobacter and Shigella. However, long term morbidity data,
on stunting and cognitive impairment and data on the overall economic impacts, are also needed to
support the value proposition for a vaccine and to encourage investment. Much of the disease burden
is in LMICs. These markets are perceived to have limited commercial value by the private sector. Thus,
investment is likely to require public and philanthropic funding support. Nonetheless, for some private
investors, the lack of perceived return may be supplemented by more lucrative target product profiles
(TPPs), including populations in HICs, such as MSM, travellers and military personnel. Some of these
economic challenges could also be addressed through a multi-pathogen vaccine candidate which would
increase the value proposition for a vaccine against enteric pathogens, as well as for Salmonella spp.

Many of the pathogens identified as priority due to AMR commonly cause hospital-acquired infections
(HAIs), including A. baumannii, K. pneumoniae, P. aeruginosa, S. aureus, E. faecium and Enterobacter
spp- The pathway to clinical development for vaccines against some of these pathogens is unclear (85)
as large efficacy trials are likely to be required due to low disease incidence in target populations (72). In
addition, target populations include critically ill patients, often with multiple co-morbidities and severely
compromised immune systems. Many of these patients are also pre-treated with antibiotics and other
medications. All of this makes the evaluation of clinical end points challenging (100, 101).

Identifying appropriate target populations and the timing of vaccine administration represent further
challenges. Administering a vaccine to a critically ill patient at admission to an intensive care unit leaves
limited time for an effective immunological response (705). Prophylactic use of a vaccine in advance
of scheduled hospital procedures may be an alternative approach. However, there is currently no
precedent nor evidence to support the use of prophylactic vaccines against HAIs in high-risk patients.
Given the challenges of Phase 3 trials for vaccines against HAls, alternative strategies may be useful to
explore with regulatory authorities. For example, the use of correlates or surrogates of protection, and
for the approved, the collection of post-licensure effectiveness data and real-world evidence. However,
correlates of protection are lacking for most of these pathogens, and the clinical trial pathway to show
proof of concept after Phase 1 and 2 is difficult.
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Table 45. Vaccines and antibiotics in clinical development by pathogen and category.

WHO Bacterial Priority

Vaccine development by

Antibiotic development

Pathogen . . by phase and licensed
g Pathogens List Phase and licensed i 2
since 2017
Acinetobacter baumannii Critical Preclinical Phase 3
Klebsiella pneumoniae Critical Phase 1/2 Licensed
US FDA 2017; EMA 2018
Pseudomonas aeruginosa Critical Preclinical Phase 3
Enterobacter spp. Critical No vaccines in clinical/ Phase 3
preclinical development
Escherichia coli (ExPEC) Critical Phase 3 Phase 1
Escherichia coli (ETEC) Critical Phase 2b Phase 3
Neisseria gonorrhoeae High Phase 3 Phase 3
Campylobacter spp. High Preclinical Phase 2
Staphylococcus aureus High Phase 2 Phase 3
Salmonella spp. (Typhi) High Licensed vaccine No products in clinical
development
Salmonella spp. (Paratyphi) High Phase 3 No products in clinical
development
Salmonella spp. (non- High Phase 1 No products in clinical
typhoidal) development
Enterococcus faecium High No vaccines in clinical/ Phase 1/2
preclinical development
Helicobacter pylori High Preclinical Phase 1/2
Shigella spp. Medium Phase 2 None
Streptococcus pneumoniae Medium Licensed vaccine Phase 3
Haemophilus influenzae, b Medium Licensed vaccine Licensed

(Hib)

US FDA 2019; EMA 2020

Clostridioides difficile

Phase 3

Phase 2

Mycobacterium tuberculosis

Licensed vaccine

Phase 1

" Information extracted from the WHO “2021 Antibacterial agents in clinical development and preclinical: an overview and analysis”.
Licensed means since 1 July 2017. The Phase of development was that of November 2021. Some of these are developed as
broad-spectrum to target more than one pathogen. If there was a pathogen specific antibiotic, it was included in the table instead

of the broad-spectrum compound, despite the phase of development. The broad-spectrum antibiotics are: Cefiderocol for MDR
Acinetobacter, and Enterobacterales, as well as Stenotrophomonas maltophila (licensed US FDA (11/2019, cUTI; 9/21 HAP/VAP)
EMA (4/2020)); Taniborbactam + cefepime for carbapenem-resistant Gram-negative bacilli (Phase 2); CALO2 for S. pneumoniae, P.
aeruginosa, A. baumannii, Enterobacterales, and S. aureus (Phase 1); TRL1068 for both Gram-negative and Gram-positive bacteria
(Phase 1); Rhu-pGSN for both Gram positive and Gram-negative bacteria (Phase 1/2); TRL1068 for Gram positive and Gram-negative
bacteria biofilms (Phase 1/2);. Lefamulin for Streptococcus pneumoniae, methicillin-susceptible Staphylococcus aureus, Haemophilus
influenzae, Legionella pneumophila, Mycoplasma pneumoniae, and Chlamydophila pneumoniae (US FDA (8/2019) EMA (7/2020)).

In addition, it has activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium
(VRE), multidrug-resistant Neisseria gonorrhoeae, and Mycoplasma genitalium.

3. Discussion
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Finally, there are number of challenges unique to some pathogens/infection syndromes. For example, for
commensal pathogens, such as E. coli, the effect of immunization on the composition of the microbiome
and the consequences for health of such impacts are not well understood. For other pathogens, such
as C. difficile, the role of the microbiome in disease progression is also poorly understood. Developing
a toxin mediated vaccine for diarrhoeal disease or a vaccine to address UTI in an otherwise healthy
individual, is likely to be different from developing a vaccine to address Gram-negative infections in
immunocompromised hosts, where the immune response might be compromised, and infections may
involve multiple pathogens.

Another example of unique challenges is the development of maternal vaccines. K. pneumoniae is
associated with a high burden of neonatal sepsis in developing countries. For vaccine development
against K. pneumoniae, clinical trials involving neonates are challenging, and commercial attractiveness
is limited (37). Preclinical trials in animal models have shown that maternal vaccination may offer
protection to neonates against Gram-negative bacteria, including Klebsiella spp., E. coli and P.
aeruginosa (122). However, there are challenges associated with the lack of clinical trials in high-burden
settings, as neonatal infections predominantly occur in lower resourced settings with weak health
systems and non-lucrative markets for private investors (37). In HICs, data indicate that K. pneumoniae
infections are most often hospital acquired and tend to affect a different sub-set of the population,
including the elderly and immunocompromised. The lack of a clearly defined target population makes
recruitment for clinical trials and the cost-effectiveness case for a vaccine challenging.

Despite these challenges, for many of the pathogens clustered into Group A in this analysis, a vaccine
candidate could be possible. Vaccines already exist for four of the pathogens on the WHO BPPL and
their impact on AMR is already established. These include PCVs against S. pneumoniae, TCVs against
Typhoid, Hib vaccines against H. influenzae type b and BCG for M. tuberculosis. PCVs have dramatically
reduced mortality in the USA and Europe in comparison to other regions, where the vaccine is not
widely available and used. However, resistant S. pneumoniae continues to be one of six leading causes
of deaths associated with AMR globally (5) and the number one cause of death due to any AMR infection
in western sub-Saharan Africa (5). The development of vaccines against resistant pathogens is not
enough to prevent the emergence of AMR and associated deaths. Ensuring vulnerable populations have
access is also essential to save lives and prevent the further spread of AMR.

FUTURE INNOVATION AND THE POTENTIAL OF mRNA VACCINES

Innovation is occurring in the development of novel vaccines against AMR pathogens, but there
are biological, clinical development-related and economic challenges which differ from one
pathogen to another. While incentive-based policies might be needed for some vaccines, for
others alternative interventions may be more appropriate.

One possibility for innovation is to employ the new mRNA vaccine technology, which can be
either developed and scaled up to manufacture products faster than with conventional vaccines
(123) and cost less to produce (724). In the present analysis only one mRNA vaccine candidate
was identified against M. tuberculosis, however, further candidates using this technology are
likely to emerge in the future.

Antigen expression of mMRNA vaccines occurs in vivo, which removes the need for some costly and
time-consuming manufacturing requirements associated with other vaccine platforms requiring
in vitro expression (125). However, research is needed to improve the thermostability of mRNA
vaccines, which currently require ultra-cold chain for long-term storage. Further research is also
needed to incorporate multiple antigens into mRNA vaccines and assess safety in infants and
children (725). In addition, the only currently licensed mRNA vaccines are against viral pathogens,
further research is needed to understand if viable mRNA bacterial vaccines can be effective.

3. Discussion
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4. Conclusions

This report has identified the following four broad groups of pathogens in the WHO BPPL on basis of the
preclinical and clinical development pipeline and assessments of vaccine development feasibility. There
are vaccines already licensed against four priority pathogens for AMR (Group A) (S. enterica ser. Typhi,
S. pneumoniae, Hib and M. tuberculosis). For these existing vaccines coverage should be increased
to WHO immunization targets and optimised to reduce AMR, and the development of more effective
vaccines against M. tuberculosis should be accelerated. Group B constitutes pathogens with vaccine
candidates in late-stage clinical development (ExPEC, S. enterica ser. Paratyphi A, N. gonorrhoeae and
C. difficile). Research on those vaccines currently in late clinical trials should be accelerated. Group C
constitutes five pathogens for which vaccine candidates have moderate to high feasibility for vaccine
development and most of these are in early clinical trials (ETEC, K. pneumoniae, NTS, Campylobacter
spp. and Shigella spp.). There may be vaccines against these pathogens that become available in the
long term, however, short term solutions to prevent resistance should focus on interventions other than
vaccines. The remaining six pathogens from the WHO priority pathogens list represent Group D (A.
baumannii, P. aeruginosa, Enterobacter spp., E. faecium, S. aureus, and H. pylori). These pathogens
were found to have low feasibility for vaccine development due to biological and other product
development challenges. Vaccines are not likely to be available for the foreseeable future against these
pathogens and research is needed into alternative methods of AMR control.
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5. Methodology

Scope

Pathogen scope

The pathogens included in this analysis were limited to the WHO BPPL (7), as well as M. tuberculosis
and C. difficile, as used in prior WHO antibacterial pipeline analyses (126). Although other national lists
identify further drug-resistant bacteria as priority threats according to local needs (727, 128), including
Group A and Group B Streptococcus, these were outside the scope of the present analysis. This analysis
focused on bacterial pathogens prioritized due to AMR. However, vaccines against viruses, parasites and
fungi also have an impact on AMR by reducing consumption of antibiotics, a key driver of resistance (8).

A key difference between the mechanism of action for vaccines and antibiotics is that vaccines typically
have a more specific target and may provide protection only against a specific serotype or strain of a
pathogen; a single antibiotic may be effective against various bacterial species susceptible to the mode
of action of the antibiotic. The WHO BPPL was designed to prioritize pathogens to guide R&D of new
therapeutics rather than vaccines and considers pathogens by resistance, for example carbapenem-
resistant Enterobacterales. For the purposes of tailoring this list to a vaccine-specific analysis, some of
the pathogen groups in the WHO priority list have been sub-divided. The Enterobacterales have been
split and condensed into the most encountered species: K. pneumoniae, Enterobacter spp., ETEC and
ExPEC. Multiple serotypes exist among the Salmonella species with significantly different epidemiology
and clinical presentation, presenting substantially different targets for vaccine development. Here, the
most common serovars of S. enterica ser. Typhi, NTS serovars and S. enterica ser. Paratyphi A are
considered. Of the Shigella species, S. flexneri, S. sonnei and S. dysenteriae were considered, each of
which presents distinct antigenic targets for vaccination.

Inclusion/exclusion criteria

This report only considers novel vaccine candidates, unlicensed against the pathogen considered
anywhere in the world. Clinical candidates in Phases 1 to 3 that were active or inactive/discontinued
for which development occurred in the last 10 years were included. Novel adjuvants, dosing regimens
or new combinations were not considered unless the formulation of the vaccine was changed. This
particularly applies to BCG, where there are trials looking at booster vaccination and to some of the
current clinical trials for H. influenzae and S. pneumoniae. Monoclonal antibodies or candidates for
passive immunization were not included in this analysis; however, these are captured in the WHO
antibacterial preclinical pipeline report (9).

Research on a candidate was considered to be active if any clinical development activity had taken place
in the last 3 years, they were listed on the developer’s pipeline as active or they were confirmed to be
active by consulted experts. Candidates were identified as inactive if no clinical development activity
had been identified in the last 3 years or experts identified them as inactive. Candidates were labelled as
discontinued if they were no longer listed in the industry development pipeline or the literature search
or if the expert consultation indicated development had ceased. Inactive and discontinued candidates
are listed separately to candidates currently in active development.

The preclinical pipeline considers vaccine candidates in late stages of active preclinical development
and is a snapshot of some of the current research. The list is not exhaustive, as preclinical research is
highly dynamic.
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Search strategy
Clinical pipeline

Clinical trials

A search was performed of the International Clinical Trials Registry Platform (ICTRP), which includes
clinical trial databases from Australia, Brazil, China, Cuba, Germany, European Union, India, Islamic
Republic of Iran, Japan, Lebanon, New Zealand, Pan African Clinical Trial Registry, Peru, Thailand, The
Netherlands, Republic of Korea, and Sri Lanka as primary registries and the USA (Clinicaltrials.gov) as a
data provider. In addition, a search was conducted of clinicaltrials.gov, and Japanese and Russian data-
bases in local languages. Industry repositories of clinical trials were also consulted.

Literature review

The report included data identified through a systematic review and analysis of grey literature. A search
of PubMed included only papers written in English, from 2010 onwards. Search terms incorporated
pathogen names as follows: ((vaccine) AND ((candidate) OR (pipeline) OR (research) OR (landscape)))
AND (pathogen name) AND ((phase 1) OR (phase 2) OR (phase 3) OR (clinical)). Title and abstract were
then screened for relevance before the full text articles were reviewed. Papers were scanned for clinical
and preclinical vaccine candidates targeting the pathogens in scope. Data were extracted and cleaned to
remove duplicates or entries that did not meet the inclusion criteria. The grey literature was consulted in
the form of reports, documents and slides from Product Development for Vaccines Advisory Committee
(PDVAC) meetings; reports, including Vaccines to tackle drug resistant infections by the Wellcome Trust
(12), the Pew Charitable Trusts report (70) and the Access to Medicine Foundation’s benchmark report
(11); the WHO tracker database (up to 2018) and any other grey literature referenced or suggested by
experts. Data were also included from AdisInsight, accessible from the WHO Global Observatory on
Health R&D, and the Dynamic Dashboard from the Global AMR R&D Hub.

Preclinical pipeline

A direct search of the literature was not performed for the preclinical pipeline. Candidates that emerged
from the search processes outlined in the “Literature review” section for the clinical pipeline that were
still in preclinical development were included in the preclinical pipeline. Candidates identified in the
previous pipeline for antibacterial agents in clinical and preclinical development were also included (9).

A note on previous studies

The number of vaccine candidates in clinical development (61) identified in this report is similar to the
64 clinical-stage vaccine candidates against AMR pathogens cited in the 2018 Wellcome Trust report,
although this did not include vaccines against C. difficile (12) and the timeframe was from 2013 to
2018. The report of the Pew Charitable Trusts found 10 vaccines in development against drug-resistant
pathogens (70), and the AMR Industry Alliance reported 11 candidates (129). These differences are due
to the broader scope of this report, which is not limited to members of the AMR Industry Alliance and
includes all pathogens on the WHO priority list, in addition to C. difficile and M. tuberculosis, while Pew
included only clinical candidates and did not include H. pylori or M. tuberculosis. Finally, the report has
identified 50 vaccine candidates for which development was discontinued after clinical trials had started
that are listed in this report as inactive candidates.

Data collection

The following data points were collected: pathogen, other pathogens targeted, candidate vaccine name,
approach (live attenuated, mRNA, etc.), prophylactic / therapeutic, route of administration (oral /
parenteral / nasal / other), clinical trial registry ID (relevant clinical trials in the last 10 years), non-
exhaustive list of relevant publications (publication year, lead author and full publication link / PMID),
activity status (active / inactive / discontinued).

For each candidate in clinical trials, where available the following data were gathered for the most
recent clinical trial in the highest phase of development: registry link, trial status (open, recruiting; open,
not recruiting / completed / terminated / withdrawn / unknown), developer name, sponsor location,
sponsor type (academic / industry / government / other / unknown), Phase (1 /2 / 2b / 3), study start
date, completion date (anticipated or actual) and, for trials in Phase 3: age, enrolment size and location.

Bacterial vaccines in clinical and preclinical development 2021: an overview and analysis



Feedback

A draft clinical and preclinical pipeline report was generated and shared for feedback with stakeholders
across industry, academia, funding agencies, policymakers, and other experts. Comments were reviewed
and incorporated into the final data set and report.

Limitations

This clinical and preclinical pipeline analysis was reliant on data available in the public domain or from
the contacted experts. Although this was a global review, many regional databases and research hubs
exist, and it is highly possible that products in clinical development have been missed. Targeted searches
from Japan and the Russian Federation have attempted to broaden the search. This report does not
attempt to present a complete picture of products in preclinical development as this space is highly
dynamic. The preclinical pipeline relied on results from the searches performed specifically for the
clinical pipeline, and it is possible some candidates may have been missed.

Not all data points could be found for every candidate entry, and unknowns have been left blank. In
some cases data on the current state of development are limited, which may affect how accurately
candidates are classified as active, inactive or discontinued.

Feasibility assessments

A full methodology and description of feasibility assessments is published and described here (26).
The indicators and sub-indicators used to assess biological, product development, and access and
implementation feasibility are shown in Table 1. These indicators and sub-indicators were rated very
low, low, medium, high or very high by pathogen-specific experts, and associated scores from 1 (very
low) to 5 (very high) were given. The indicators and thresholds for the indicators were developed by
PATH, the London School of Hygiene & Tropical Medicine and the WHO Working Group on Vaccines
and AMR. The assessments of feasibility were made by pathogen-specific experts. Although efforts
have been made to align ratings by sharing a common methodology and agreed thresholds, there is
inevitably a level of subjectivity. Different amounts of information are available for different pathogens
and challenges differ, though synergies also exist.

5. Methodology
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