Angiotensin Converting Enzyme inhibitor (ACEi) / Angiotensin Receptor Blocker (ARB) – To STOP OR Not in Advanced Renal Disease

Royal College *of* Physicians *of* Edinburgh

Educating doctors, improving care.

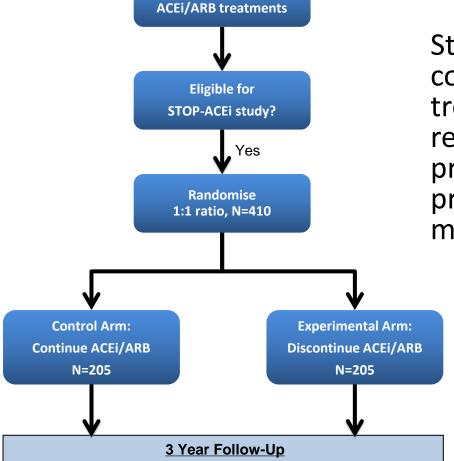
Investigator Meetings

THE HULL YORK MEDICAL SCHOOL

NHS Trust

1st and 2nd September 2016 - London and Leeds

Prof Sunil Bhandari Consultant Nephrologist Honorary Clinical Professor International Director RCPE


Hull and East Yorkshire Hospitals

Multi-centre Randomised Controlled Trial of Angiotensin Converting Enzyme inhibitor/Angiotensin Receptor Blocker withdrawal in advanced renal disease

CKD patients stage 4-5

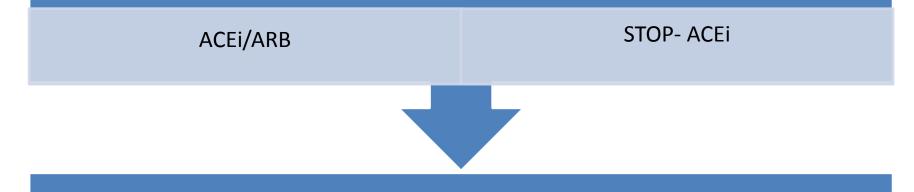
Stopping ACEi or ARB treatment, compared with continuing on these treatments, improves or stabilises renal function in patients with progressive stages G4 or G5 CKD provided good BP control is maintained

NHS National Institute for Health Research

Efficacy and Mechanism Evaluation Programme

Eligibility

Key Inclusion Criteria	Key exclusion criteria
 Aged ≥18 years (male or female) CKD stage G4 or G5 (MDRD eGFR <30ml/min) & not on dialysis Progressive deterioration in renal function (fall in eGFR of >2ml/min/year) Treatment with an ACEi or ARB or a combination of both for >6 months with at least 25% of the maximum recommended daily dose Resting BP ≤160/90 mmHg At least 3 months specialist renal follow-up at the time of entry into the trial 	 Aged <18 years Undergoing dialysis therapy Uncontrolled hypertension (>160/90mmHg) or requirement for 5 or more agents to control BP History of MI or stroke in preceding 3 months Pregnancy or breastfeeding Immune mediated renal disease requiring disease specific therapy


Pre-specified Minimisation Variables

- **Diabetes Mellitus**: Type 1; Type 2; none
- **Blood pressure**: MAP <100; ≥ 100(diastolic x2 + systolic/3)
- **Age**: <65; ≥ 65 years
- **Proteinuria**: PCR <100 ; ≥100 mg/mmol
- **eGFR**: <15 ≥ 15 ml/min

End-points

410 patients with eGFR <30ml/min and >2ml/min/year loss of eGFR over I year – 3 measures and BP ≤160/90 mmHg and on ACEi/ARB for at least 3 months

Primary Endpoint = 5ml difference at 3 years in eGFR based on MDRD (effect size 0.31 with 80% power and alpha =0.05)

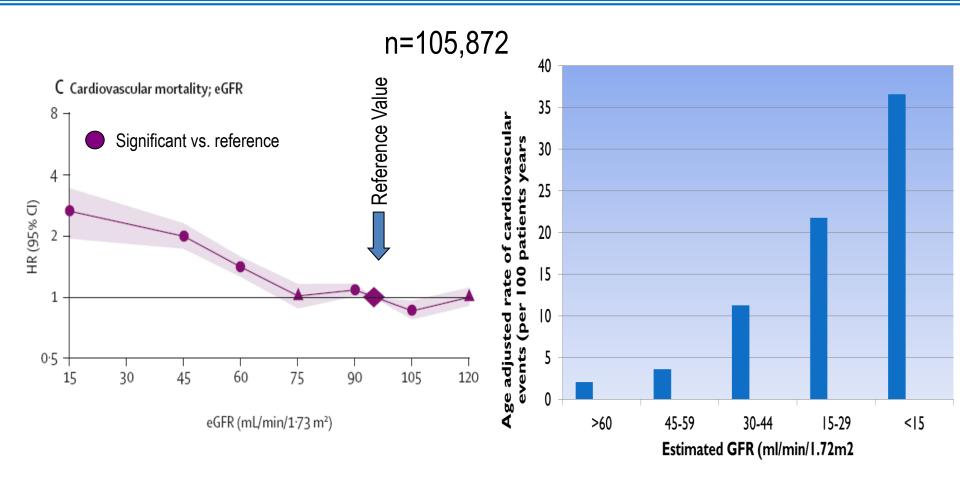
BP RRT/>50% decline Time to reach ESRD/RRT Cystatin C Hospitalisation rates 6 minutes walk test Cardiac events Survival KD QOL

Urine PCR Hb concentration Change in ESA use

EQUIPOISE for a Study

- As GFR falls below 30 ml/min (stages G4 to G5), the situation changes: the vessels stiffen and calcify, statins lose their effectiveness, the heart often fails and the evidence base for clinical decision making becomes scanty.
- Cardio-protective effect
 - No clear evidence of reduced or increased CV morbidity/mortality
 - In non CKD many studies YES
 - Heart failure some post hoc evidence
 - No studies in advanced non dialysis CKD
- **Anti-proteinuric effect** is it important in advanced CKD?
 - ?less relevant due to severe glomerulosclerosis
- Causes progressive renal dysfunction
 - Increase hyperkalaemia
 - ? Sudden cardiac death
 - Increase anaemia and potentially ESA use
 - Hypotension

Retardation of CKD progression may be a strategy for CVD Protection



Outline

- Latest research
 - Renal
 - Cardiology
- Recruitment issues
- Trial update and possible changes
- Future
 - Follow-up
 - Retention of patients to end of study and beyond

Kidney function is an independent risk factor for CV mortality in the general population

CKD Prognosis Consortium Lancet Matsushsita et al 2010; 375: 2073–2081 Go et al 2004

"Heat Maps" of Risk in CKD patients

		All-cause mortality							
		ACR <10	ACR 10-29	ACR 30-299	ACR ≥300		ACF <10		
	eGFR > 105	1.1	1.5	2.2	5.0	eGFR > 105	0.9		
Summary of	eGFR 90-105	Ref	1.4	1.5	3.1	eGFR 90-105	Re		
relative risks from	eGFR 75-90	1.0	1.3	1.7	2.3	eGFR 75-90	1.0		
categorical	eGFR 60-75	1.0	1.4	1.8	2.7	eGFR 60-75	1.7		
meta-analysis ipstick included) (-, \pm , +, \geq ++)	eGFR 45-60	1.3	1.7	2.2	3.6	eGFR 45-60	1.5		
	eGFR 30-45	1.9	2.3	3.3	4.9	eGFR 30-45	2.2		
	eGFR 1530	5.3	3.6	4.7	6,6	eGFR 15-30	14		

ovascular mortality

	ACR <10	ACR 10-29	ACR 30-299	ACR ≥ 300
eGFR > 105	0.9	1.3	2.3	2.1
eGFR 90-105	Ref	1.5	1.7	3.7
eGFR 75-90	1.0	1.3	1.6	3.7
eGFR 60-75	1.4	1.4	2.0	4.1
eGFR 45-60	1.5	2.2	2.8	4.3
eGFR 30-45	2.2	2.7	3.4	5.2
eGFR 15-30	14	7.9	4.8	8.1

relative risk from categorica meta-analys (dipstick inclu (-, ±, +, ≥+

Kidney failure (ESRD)

	ACR <10	ACR 10-29	ACR 30-299	ACR ≥300
eGFR > 105	Ref	Ref	7.8	18
eGFR 90-105	Ref	Ref	11	20
eGFR 75-90	Ref	Ref	3.8	48
eGFR 6075	Ref	Ref	7.4	67
eGFR 4560	5.2	22	40	147
eGFR 30-45	56	74	294	763
eGFR 15-30	433	1044	1056	2286

Acute kidney injury (AKI)

ACR <10

Ref

Ret

Ref

Ref

2.2

7.3

17

eGFR

> 105eGFR

90-105 eGFR

75-90 eGFR

60-75 eGFR

45-60 eGFR

30-45 eGFR

15-30

Progressive CKD

ACR 10-29	ACR 30-299	ACR ≥300		ACR <10	ACR 10-29
Ref	2.7	8.4	eGFR > 105	Ref	Ref
Ref	2.4	5.8	eGFR 90-105	Ref	Ret
Ref	2.5	4.1	eGFR 75~90	Ref	Ref
Ref	3.3	6.4	cGFR 60-75	Ref	Ref
4.9	6.4	5.9	cGFR 45-60	3.1	4.0
10	12	20	eGFR 30-45	3.0	19
17	21	29	eGFR 15-30	4.0	12

	ACR <10	ACR 10-29	ACR 30-299	ACR ≥ 300
eGFR > 105	Ref	Ref	0,4	3.0
eGFR 90-105	Ref	Ret	0.9	3.3
eGFR 75-90	Ref	Ref	1.9	5.0
eGFR 60-75	Ref	Ref	3.2	8.1
eGFR 4560	3.1	4.0	9.4	57
eGFR 30-45	3.0	19	15	22
eGFR 15-30	4.0	12	21	7.7

Levey AS et al, Kidney Intern 2011;80-17-28

Does the potential gain of eGFR with ACEi/ARB cessation lead to improved morbidity & mortality or an increase in adverse cardiovascular outcomes?

Cardiovascular guidelines have recommended caution with the use of ACEi/ARBs for patients with HF and advanced CKD

McMurray JJ et al; ESC Committee for Practice Guidelines: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure : European society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J 2012; 14: 1787–1847

HF studies provide little information to direct care in advanced CKD - patients with significant renal dysfunction were excluded

Trial (reference)	Intervention	Cohort	Sample	Follow-up	Creatinine/ eGFR	Outcome
CONSENSUS [46]	Enalapril vs. placebo	NYHA IV HF	253	188 days	124–132 μm/l	Improved symptoms and life expectancy vs. placebo, no impact on sudden cardiac death
Val-HeFT [43]	Valsartan vs. placebo	NYHA I–II HF	5,010	27 months	58 ml/min	Reduced composite mortality and morbidity and improved symptoms
V-HeFT-II [45]	Enalapril vs. hydralazine/ isosorbide dinitrate	Men; NYHA class II–III HF	804	2.5 years	Not measured	Sudden death 14%; mortality from progressive HF 12 vs. 23%
SOLVD-treatment [44]	Enalapril vs. placebo	NYHA class II/III HF and EF <35%	2,569	41 months	1.2 mg/dl (106 μmol/l)	Sixteen percent fewer deaths in enalapril group (p = 0.0036), 26% less hospitalizations (p < 0.0001)
SOLVD-prevention [42]	Enalapril vs. placebo	Asymptomatic patients with EF ≤35%	4,228	37 months	1.2 mg/dl (106 μmol/l)	Eight percent lower mortality (NS); fewer deaths and hospitalizations due to HF (p < 0.001)
CHARM-added trial [38]	Candesartan vs. placebo	LV dysfunction already taking ACEi	2,548	42 months	Not measured excluded >3.0 mg/dl (265 µmol/l)	Candesartan significantly improved all-cause mortality
CHARM alternative [37]	Candesartan vs. placebo	LV dysfunction intolerant to ACEi	2,028	42 months	Nil Excluded >3.0 mg/dl (265 µmol/l)	Candesartan significantly improved all-cause mortality
ELITE I [39]	Losartan vs. captopril	>65 years with HF NYHA II–IV; EF <40%	722	48 weeks	106 µmol/l	No difference in outcomes of worsening renal function
ELITE II [40]	Losartan vs. captopril	>60 years with HF NYHA II-IV; EF <40%	3,152	555 days	Nil	No difference in all-cause mortality 1.13 (0.95–1.35)
ATLAS [41]	Lisinopril vs. losartan	LV dysfunction	3,163	~4 years	1.3 mg/dl (117 μmol/l)	Reduced mortality 8% NS Combined death and hospitalisation 15%

Table 1. Heart failure trials with baseline renal function

Ahmed/Jorna/Bhandari DOI: Nephron 10.1159/000447068

Cardiorenal End Points in a Trial of Aliskiren for Type 2 Diabetes The ALTITUDE Trial

Table 3. Most Commonly Reported	Adverse Events	and Study-Dr	ug Discontir	nuation.*			A	60-								ł
Event	Any Event	I Reported	P Value	Event Leading t Study-Drug Dis	to Permanent iscontinuation		ite Outcome oatients)	50- 40-	Hazard ra P=0.12	itio, 1.00	1 (92%) C	1, 0.98-	1.20)			
	Aliskiren (N=4272)	Placebo (N=4285)		Aliskiren (N=4272)	Placebo (N=4285)		Primary Composite Outcome (percent of patients)	30- 20-								Aliskiren Placebo
	no. of pati	ients (%)		no. of pati	ients (%)		Pris.	10-								
Hyperkalemia	1670 (39.1)	1244 (29.0)	<0.001	205 (4.8)	111 (2.6)	<0.001		<u>ہ</u>	6	12 Mo	18 nths sin	24 ince Rane	30 adomizat	36 ation	42	48
Peripheral edema	686 (16.1)	706 (16.5)	0.60	11 (0.3)	7 (0.2)	0.34	No. at Risk								-	
Hypotension	519 (12.1)	357 (8.3)	<0.001	28 (0.7)	13 (0.3)	0.02	Aliskiren Placebo	427 428		3914 3908	3661 3686	2926 2995	2233 2292	1302 1349	642 646	
Diarrhea	417 (9.8)	312 (7.3)	<0.001	11 (0.3)	7 (0.2)	0.34	в									
Hypertension	429 (10.0)	469 (10.9)	0.17	3 (0.1)	9 (0.2)	0.15	ite truts)	60 50-	Hazard ra P=0.09	tio, 1.11	1 (95% C	2 1, 0.99	-1.25)			1
Renal impairment	418 (9.8)	371 (8.7)	0.07	65 (1.5)	54 (1.3)	0.30	ompos	40-								1
Nasopharyngitis	405 (9.5)	383 (8.9)	0.39	1 (<0.1)	0	NA	ular Co rcent o	30-								1
Hypoglycemia	393 (9.2)	341 (8.0)	0.04	1 (<0.1)	3 (0.1)	NA	iova sci ne (pe	20-								Aliskiren
Back pain	363 (8.5)	353 (8.2)	0.67	1 (<0.1)	2 (<0.1)	NA	Cardiova scular Composite Outcome (percent of patients)	10-								Placebo
Dizziness	327 (7.7)	314 (7.3)	0.57	4 (0.1)	4 (0.1)	NA	-	상	6	12	18	24	30	36	42	48
Urinary tract infection	326 (7.6)	288 (6.7)	0.10	4 (0.1)	2 (<0.1)	NA	No. at Risk			Мо	nths sir	ince Rane	domiza	tion		1
Anemia	316 (7.4)	307 (7.2)	0.68	0	0	_	Aliskiren Placebo	427 428		3939 3944	3726 3741	3019 3079	2340 2385	1382 1427	679 680	
Pain in extremity	302 (7.1)	317 (7.4)	0.56	1 (<0.1)	2 (<0.1)	NA	с									
Arthralgia	302 (7.1)	313 (7.3)	0.67	0	1 (<0.1)	NA		⁶⁰ 7	Hazard ra	atio, 1.03	3 (95% (CI, 0.87-	-1.23)			I
Cough	265 (6.2)	283 (6.6)	0.45	1 (<0.1)	1 (<0.1)	NA	Renal Composite Outcome (percent of patients)	50-	P=0.74							I
Bronchitis	242 (5.7)	239 (5.6)	0.86	0	0	_	site O A patie	40- 30-								
Dyspnea	223 (5.2)	213 (5.0)	0.60	6 (0.1)	5 (0.1)	0.76	Compo Intent o	20-								
Upper respiratory tract infection	223 (5.2)	229 (5.3)	0.80	1 (<0.1)	0	NA	(pe	10-								Aliskiren Placebo
Cataract	229 (5.4)	223 (5.2)	0.75	0	0	_	_	•	6	12	18	24	30	36	42	48
Constipation	203 (4.8)	241 (5.6)	0.07	0	1 (<0.1)	NA			-			ince Rane				
Headache	200 (4.7)	220 (5.1)	0.33	2 (<0.1)	4 (0.1)	NA	No. at Risk Aliskiren Placebo	427 428		4042 4058	3846 3874	3119 3161	2409 2428	1417 1443	705 693	

The NEW ENGLAND JOURNAL of MEDICINE

Renin Inhibition ? Reduces CV events

- ASTRONAUT acute heart failure outcomes
- N=16150
 - Heart failure and reduced EF%
 - 4% diabetics (n=662)

Primary endpoint – CV death or rehospitalisation <6/12 with heart failure

<u>Results</u> –No difference in outcomes but with combination

- Increased risk hyperkalaemia HR 2.39
- Increased risk of hypotension
- Increased mortality with diabetics at 12 months from CV death/rehospitalisation and all cause mortality

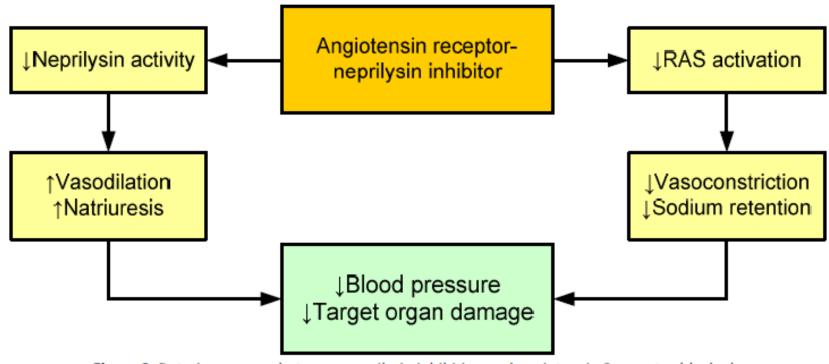
Maggtoni AP et al Eur H J 2013

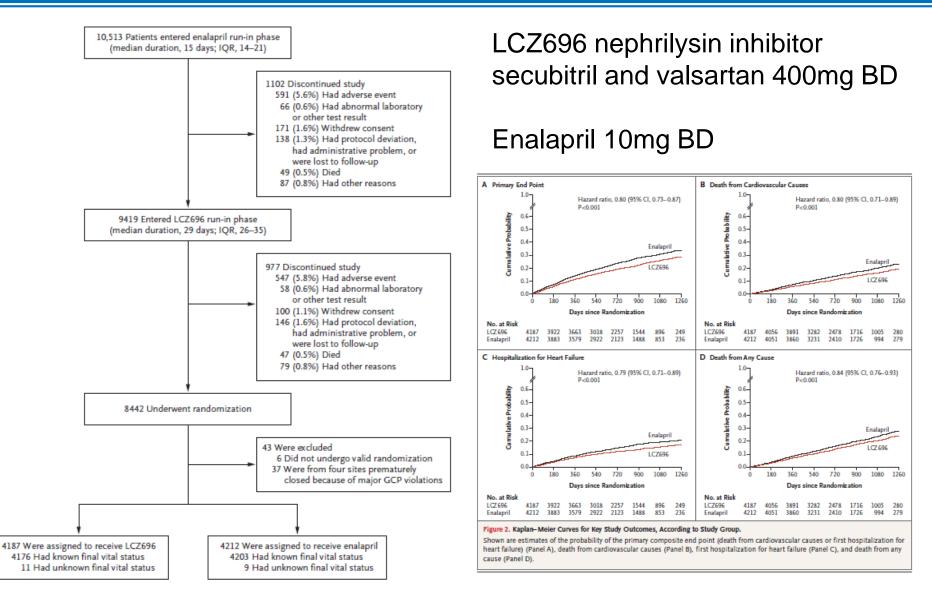
Renin Inhibition ? Reduces CV events

• ATMOSPHERE – minimising outcomes in HF patients; n=7016 with 37 months follow-up

	Primar CV death or hospitalisation for HF	
Alkiskirin	33.8%	NS
Enalipril	34.6%	NS
Both	32.9%	NS Increased adverse outcomes

LCZ696 (nephrilysin inhibitor secubitril and valsartan)



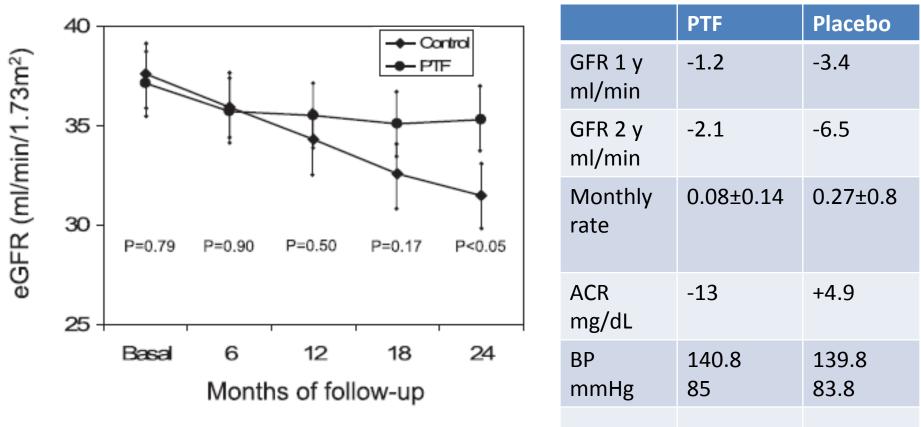

Figure 2: Putative synergy between neprilysin inhibition and angiotensin 2 receptor blockade

HARPIII Study in CKD

PARADIGM-HF

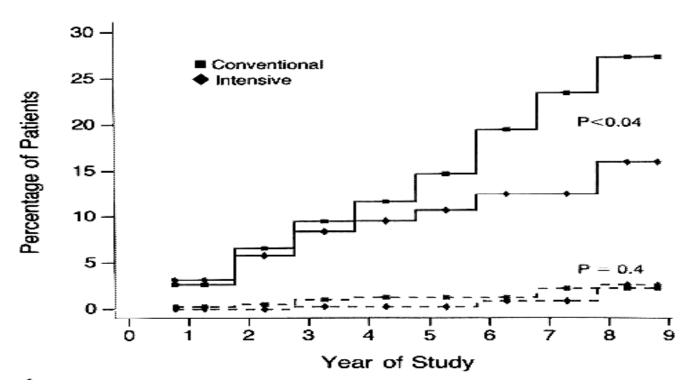
McMurray JJ et al N Eng Journal of Med 2014, 371: 993-1004 Paker M et al Circulation 2014

PARADIGM-HF

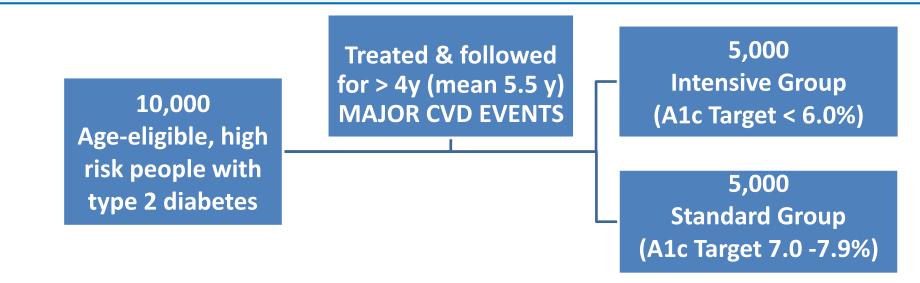

Table 2. Primary and Secondary Outcomes.*									
Outcome	LCZ696 (N=4187)	Enalapril (N= 4212)	Hazard Ratio or Difference (95% CI)	P Value					
Primary composite outcome — no. (%)									
Death from cardiovascular causes or first hospitalization for worsening heart failure	914 <mark>(</mark> 21.8)	1117 <mark>(</mark> 26.5)	0.80 (0.73–0.87)	<0.001					
Death from cardiovascular causes	558 (13.3)	693 (16.5)	0.80 (0.71–0.89)	<0.001					
First hospitalization for worsening heart failure	537 (12.8)	658 (15.6)	0.79 (0.71-0.89)	< 0.001					
Secondary outcomes — no. (%)									
Death from any cause	711 (17.0)	835 (19.8)	0.84 (0.76-0.93)	<0.001					
Change in KCCQ clinical summary score at 8 mo†	-2.99±0.36	-4.63±0.36	1.64 (0.63–2.65)	0.001					
New-onset atrial fibrillation:	84 (3.1)	83 (3.1)	0.97 (0.72–1.31)	0.83					
Decline in renal function§	94 (2.2)	108 (2.6)	0.86 (0.65–1.13)	0.28					

McMurray JJ et al N Eng Journal of Med 2014, 371: 993-1004

Effect of Pentoxifylline on Renal Function and Urinary Albumin Excretion in Patients with Diabetic Kidney Disease: The PREDIAN Trial


Juan F. Navarro-González,*^{†‡} Carmen Mora-Fernández,^{†‡} Mercedes Muros de Fuentes,^{‡§} Jesús Chahin,* María L. Méndez,* Eduardo Gallego,* Manuel Macía,* Nieves del Castillo,* Antonio Rivero,* María A. Getino,* Patricia García,* Ana Jarque,* and Javier García*

Is it worth optimising the diabetes control? DCCT STUDY


- Tight Diabetic control (type 1 DM)
 - Nephropathy reduced by 35-75%
 - Risk of progression of retinopathy reduced by 50%
 - 3x more severe hypos than the control group

The Diabetes Control and Complications Trial Research Group. The Effect of Intensive Treatment of Diabetes on the Development and Progression of long term complications in IDDM N Engl J Med 1993: 329: 977-86

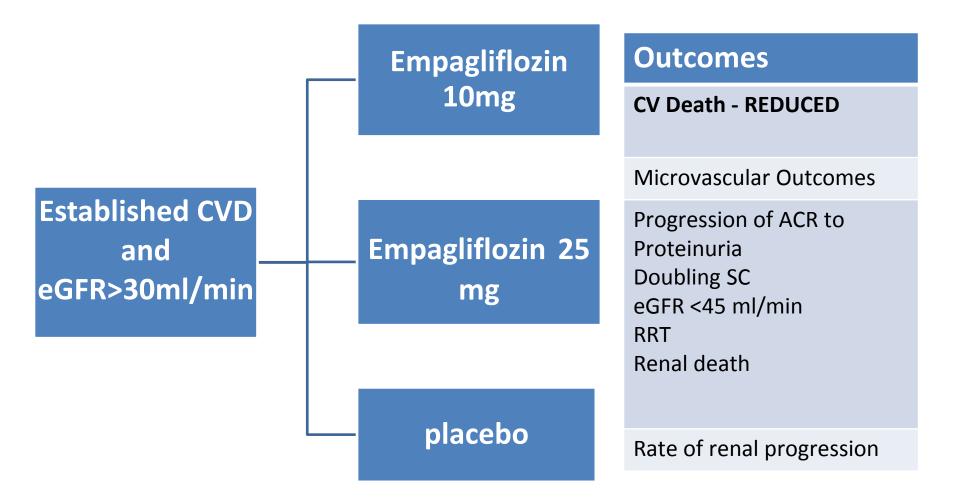
ACCORD Glycaemic Trial

Deaths	Standard Glycemic Control	Intensive Glycemic Control
n	203 (11/1000/y)	257 (14/1000/y)

Despite 10% lowering of primary outcome (MI rates) there was a 20% higher death rate

http://www.nhlbi.nih.gov/health/prof/heart/other/accord/q_a.htm

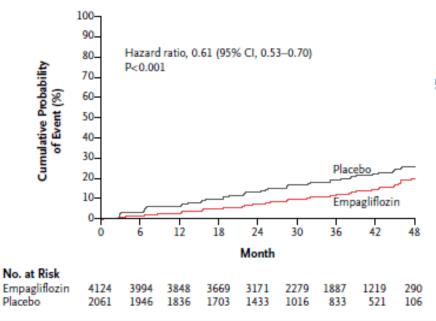
ADVANCE to ADVANCE ON STUDY


the Hb <i>i</i> vs			5 years			5 years
	• •					
n=8	3494	HB	A1c 6.5 vs 7.3%		Observ	ational study of those alive
	after 10 years media 5.9 years	n	Outcome/ HR	СІ		
	HBA1c		Similar			
	Death		1.00	0.92 - 1.08		No difference
	macro vascular outco	omes	1.00	0.92 –	1.08	No difference
	ESRD		HR 0.54	0.34 -	0.85	46% reduction

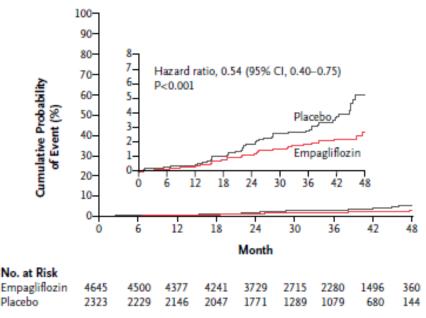
Only those with NO CKD benefited HR 0.16. There was no benefit in CKD stage 3 or worse (HR 0.89) – Early intense glycaemic control beneficial if no CKD

Sophia Zoungas et al Follow-up of Blood-Pressure Lowering and Glucose Control in Type 2 Diabetes for the ADVANCE-ON Collaborative Group N Engl J Med 2014; 371:1392-1406<u>, 2014</u> Wing MG et al Diabetes Care 2016; 39; 694

SGLT-2 –inhibitors EMPA-REG OUTCOME STUDY


Kaplan–Meier Analysis Renal Outcomes to 48 mon

- A. Probability of a first occurrence of a pre-specified renal composite outcome of incident or worsening nephropathy
- B. Post hoc renal composite outcome
- doubling of the serum creatinine
- initiation of RRT
- death from renal disease


among patients who received at least one dose of either empagliflozin or placebo.

Wanner C et al N Engl J Med 2016 DOI: 10.1056/NEJMoa15159

A Incident or Worsening Nephropathy

B Post Hoc Renal Composite Outcome

Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes

	Empaglifle		Placeb	-			
Renal Outcome Measure	no. with event/ no. analyzed (%)	rate/1000 patient-yr	no. with event/ no. analyzed (%)	rate/1000 patient-yr		Hazard Ratio (95% CI)	P Value
Incident or worsening nephropathy or cardiovascular death	675/4170 (16.2)	60.7	497/2102 (23.6)	95.9	Her	0.61 (0.55-0.69)	<0.001
Incident or worsening nephropathy	525/4124 (12.7)	47.8	388/2061 (18.8)	76.0	Heri	0.61 (0.53-0.70)	<0.001
Progression to macroalbuminuria	459/4091 (11.2)	41.8	330/2033 (16.2)	64.9	H	0.62 (0.54–0.72)	<0.001
Doubling of serum creatinine level accompanied by eGFR of \leq 45 ml/min/1.73 m ²	70/4645 (1.5)	5.5	60/2323 (2.6)	9.7	⊢∙⊣	0.56 (0.39–0.79)	<0.001
Initiation of renal-replacement therapy	13/4687 (0.3)	1.0	14/2333 (0.6)	2.1	⊢●	0.45 (0.21–0.97)	0.04
Doubling of serum creatinine level accompanied by eGFR of ≤45 ml/min/1.73 m², initiation of renal-replacement	81/4645 (1.7)	6.3	71/2323 (3.1)	11.5	⊢∙⊣	0.54 (0.40–0.75)	<0.001
therapy, or death from renal disease							
Incident albuminuria in patients with a normal albumin level at baseline	1430/2779 (51.5)	252.5	703/1374 (51.2)	266.0	н	e 0.95 (0.87–1.04)	0.25
					0.125 0.25 0.5 1	.0 2.0 4.0	
					Empagliflozin better	Placebo better	

Wanner C et al N Engl J Med 2016 DOI: 10.1056/NEJMoa15159

Proton Pump Inhibitors

10,482 – ARIC data base

- Follow-up >10y
- initial eGFR >60ml/min

Incidence of eGFR <60 ml/min

248, 757 Geisinger Health System in Pennsylvania

	ARIC		GHS	
	Hazard R.	CI	HR	CI
Unadjusted PPI vs no PPI	1.45	1.11-1.90		
Adjusted PPI vs placebo	1.50	1.14-1.96	1.24	1.2-1.28
PPI vs H2 block	1.39	1.01-1.91		
PPI BD			1.46	1.28-1.67

Lazarus B et al JAMA 2016; 176 (2)

AKI and ACEi in Elderly

Issues

- ACEi renal cleared while ARB liver cleared
- Increased overdosing with ACEi and hence risk of AKI in community
- Retrospective cross-sectional study
 - 324 patients
 - mean age 77 years
 - baseline mean eGFR 34.5 ml/min (70.4% stage G3b or worse)

Martin Chaumont et al from Belgium J of Clinical Hypertension 2016:18,6

Drug Name	Renal/Hepatic Excretion	Maximal Dosage in Renal Dysfunction, mL/min ^a	Maximal Dosage Across All Indications	American Manufacturer's Recommendations ^b
ACE inhibitors				
Captopril	100%/0%	≥50: 100 mg/d	150 mg/d	10-50: 75% normal dosage
		20-49: 50 mg/d		<10: 50% normal dosage
		< 20 or HD or DP: contraindicated		Maximal dosage: 450 mg/d
		except for specialist		
Lisinopril	100%/0%	Adaptation of the starting dose then titrate	40 mg/d HTN: 80 mg/d	ldem
		to a maximum dosage of 40 mg/d		
Perindopril	100%/0%	≥60: 5 mg/d	10 mg/d	Not found
arginine		30 <clr<60: 2.5="" d<="" mg="" td=""><td></td><td></td></clr<60:>		
		15 <clr<30: 1="" 2.5="" 2<="" d="" mg="" td=""><td></td><td></td></clr<30:>		
		HD: 2.5 mg dialysis day		
Ramipril	100%/0%	≥60: 10 mg/d	10 mg/d	<40: 5 mg/d
		30 <clr<60: 5="" d<="" mg="" td=""><td></td><td><10: 25% to 50% of the norma</td></clr<60:>		<10: 25% to 50% of the norma
		15 <clr<30: 5="" d<="" mg="" td=""><td></td><td>dosage</td></clr<30:>		dosage
		HD: 5 mg dialysis day		Maximal dosage: 20 mg/d
ARBS				
Candesartan	33%/67%	Adaptation of the starting dosage	32 mg/d	ldem
		then titrate <15: limited experience		
Losartan	10%/90%	Dosage adjustment not required unless patient is volume depleted	150 mg/d	Maximal dosage: 100 mg/d
Olmesartan		20–60: 20 mg/d	40 mg/d	Dosage adjustment not require
		<20: contraindicated to limited experience		
Telmisartan	0%/100%	Mild to moderate CKD: dosage	80 mg/d	ldem
		adjustment not required		
		Severe CKD: adaptation of the starting dosage		
Valsartan	30%/70%	>10: dosage adjustment not required	320 mg/d	<30: caution
		<10: caution		

TADL t Dressrihad ACE Inhibitars and ADDs

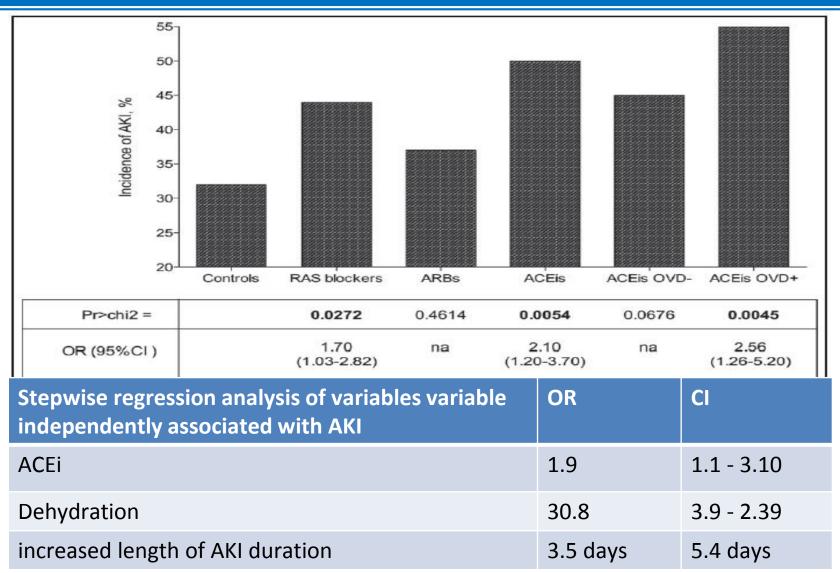
^aAdapted from official European manufacturer's recommendations (May 21, 2015).

^bAdapted from official American manufacturer's recommendations (May 21, 2015).

AKI and ACEi in Elderly

Results

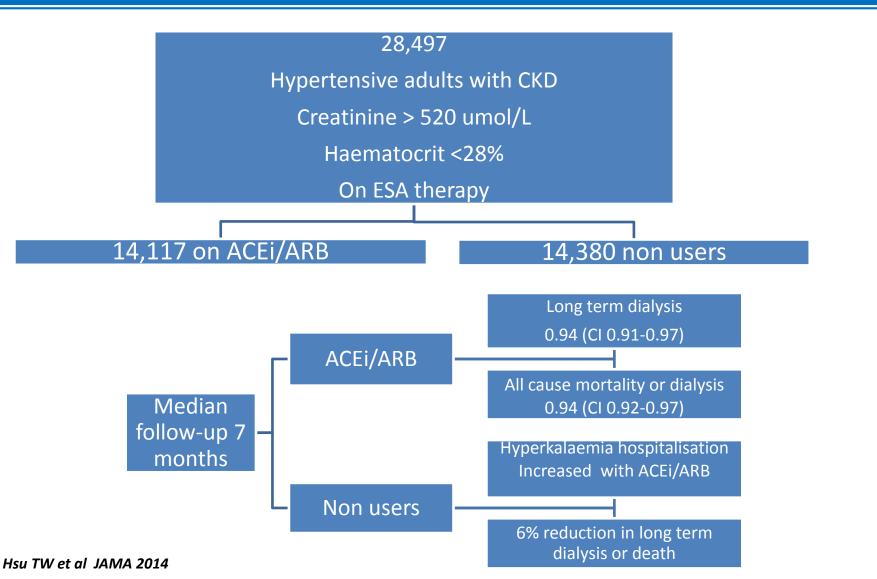
40% had AKI (91% stage 1 – 68.6% pre-renal)


Variable increasing risk of AKI:

- Younger age
- Male
- Chronic use of >/= 3 antihypertensive meds
- PVD
- Low BP at admission to hospital
- Dehydration

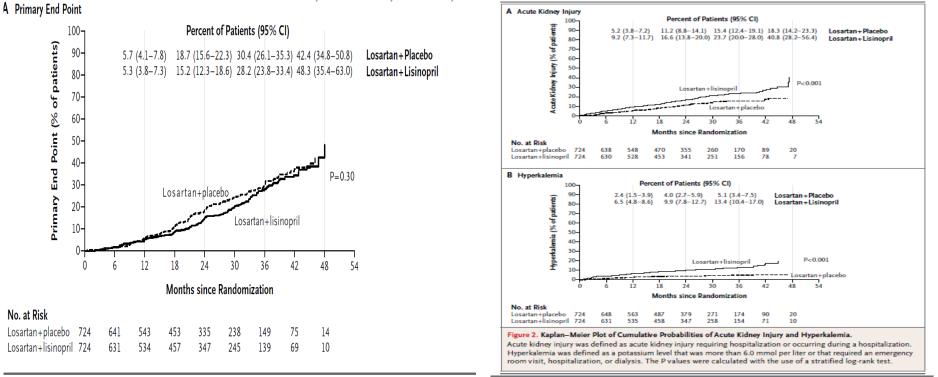
Martin Chaumont et al from Belgium J of Clinical Hypertension 2016:18,6

Incidence of AKI compared with controls depending on the class and dose of RAS blockers. OR indicates odds ratio



Martin Chaumont et al from Belgium J of Clinical Hypertension 2016:18,6

Prospective Cohort Study

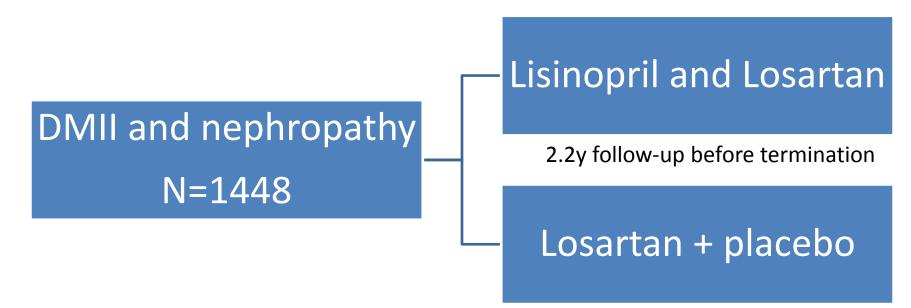

Effectiveness and safety of ACEi/ARB use in advanced CKD

ORIGINAL ARTICLE

Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

Linda F. Fried, M.D., M.P.H., Nicholas Emanuele, M.D., Jane H. Zhang, Ph.D., Mary Brophy, M.D., Todd A. Conner, Pharm.D., William Duckworth, M.D.,
David J. Leehey, M.D., Peter A. McCullough, M.D., M.P.H., Theresa O'Connor, Ph.D., Paul M. Palevsky, M.D., Robert F. Reilly, M.D., Stephen L. Seliger, M.D.,
Stuart R. Warren, J.D., Pharm.D., Suzanne Watnick, M.D., Peter Peduzzi, Ph.D., and Peter Guarino, M.P.H., Ph.D., for the VA NEPHRON-D Investigators*

• What the Literature says and we believe


• Early GFR reduction with dual blockade or ACEi is associated with RAS inhibition

- predicts slower GFR decline
- ONLY if GFR>30ml/min at start.

VA- NEPHRON D post Hoc

At study closure – increased AKI. Hyperkalaemia and hypotension

34% reduction in ERSD Losartan had a higher proteinuria reduction

"complete" RAS inhibition may blunt kidney vascular adaptation (autoregulation) to the decrease in perfusion pressure

<u>VALID Trial</u> – does larger proteinuria reduction by half doses of ACEi and ARB vs full dose of each alone delay ESRD in DM11 (n=102)

DM as a compelling indication for use of RAAS blockers: systematic review & meta-analysis of randomized trials

Table 1 | Baseline characteristics and risk of bias assessment of included trials

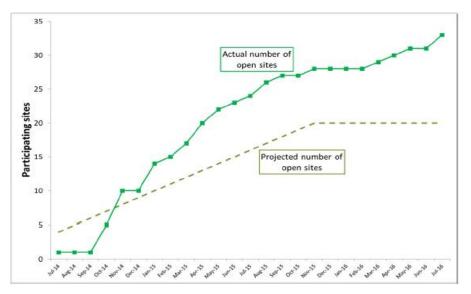
Trials	Year	Sample size	Follow-up (years)	Cohort	Age (years)	Black people (%)	Risk of bias*
RAS blockers versus calcium channel blockers:							
ABCD (hypertensive) ^{13, 14}	1998	470	5.6	Diabetes mellitus and hypertension	58	14	+++
ABCD (normotensive) ¹⁵	2002	354	5.3	Diabetes mellitus and normotensive	59	7	+++
ALLHAT ^{16, 17} (diabetes mellitus)	2002	7107	4.9	Diabetes mellitus and hypertension	67	39	+++
ALLHAT ^{16, 17, 18} (impaired fasting glucose)	2002	771	4.9	Impaired fasting glucose and hypertension	67	30	+++
BENEDICT ¹⁹	2004	604	3.6	Diabetes mellitus and hypertension	62	NR	±±+
CAMELOT ²⁰ (diabetes mellitus)	2004	233	2	Diabetes mellitus and coronary artery disease	58	NR	+++
CAMELOT ²⁰ (impaired fasting glucose)	2004	233	2	Impaired fasting glucose and coronary artery disease	58	NR	+++
CASE-J ^{21, 22, 23} (diabetes mellitus)	2008	1195	3.2	Diabetes mellitus and hypertension	67	NR	+++
FACET ²⁴	1998	380	2.9	Diabetes mellitus and hypertension	63	NR	+±+
Fogari et al ²⁵	2002	205	4	Diabetes mellitus with proteinuria and hypertension	63	NR	+±±
IDNT ^{26, 27, 28}	2001	1146	2.6	Diabetes mellitus with nephropathy and hypertension	60	13	±++
JMIC-B ^{29, 30} (diabetes mellitus)	2004	372	3	Diabetes mellitus, hypertension, and coronary artery disease	64	NR	+++
J-MIND ³¹	2001	436	2	Diabetes mellitus and hypertension	60	NR	++±
MITEC ³²	2009	209	2	Diabetes mellitus and hypertension	60	NR	+±+
MOSES ^{33, 34} (diabetes mellitus)	2005	498	2.5	Diabetes mellitus, hypertension, and cerebrovascular accident	70	NR	+++
NAGOYA HEART ³⁵	2012	1150	3.2	Diabetes mellitus and hypertension	63	NR	+±+
STOP-Hypertension-2 ³⁶ (diabetes mellitus)	1999	466	5	Diabetes mellitus and elderly hypertension	76	NR	±++
RAS blockers versus diuretic:							
ALLHAT ^{16, 17} (diabetes mellitus)	2002	9504	4.9	Diabetes mellitus and hypertension	67	39	+++
ALLHAT ^{16, 17, 18} (impaired fasting glucose)	2002	1035	4.9	Impaired fasting glucose and hypertension	67	30	+++
ANBP2 ^{37, 38} (diabetes mellitus)	2003	441	4.1	Diabetes mellitus and elderly hypertension	72	NR	±++
NESTOR ³⁹	2003	569	1	Diabetes mellitus with microalbuminuria and hypertension	60	5	+±+
RAS blockers versus β blockers:							
UKPDS 3940	1998	758	8.4	Diabetes mellitus and hypertension	56	8	+++
LIFE ^{41, 42, 43, 44} (diabetes mellitus)	2002	1195	4.8	Diabetes mellitus and hypertension with left ventricular hypertrophy	67	12	+++

ABCD=Appropriate Blood Pressure Control in Diabetes; ALLHAT=Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; ANBP2=Second Australian National Blood Pressure Study; BENEDICT=Bergamo Nephrologic Diabetes Complications Trial; CAMELOT=Comparison of Amlodipine vs Enalapril to Limit Occurrences of Thrombosis; CASE-J=Candesartan Antihypertensive Survival Evaluation in Japan; FACET=Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial; IDNT=Irbesartan Type II Diabetic Nephropathy Trial; JMIC-B=Japan Multicenter Investigation for Cardiovascular Diseases-B; J-MIND=Japan Multicenter Investigation of Antihypertensive Treatment for Nephropathy in Diabetics; LIFE=Losartan Intervention For Endpoint reduction; MITEC=Media Intima Thickness Evaluation with Candesartan cilexetil; MOSES=Morbidity and Mortality After Stroke, Eprosartan Compared With Nitrendipine for Secondary Prevention; NAGOYA HEART=Comparison between valsartan and amlodipine regarding morbidity and mortality in patients with hypertension and glucose intolerance; NESTOR=Natrilis SR versus Enalapril Study in Type 2 diabetic hypertensives with micrOalbuminuRia; NR=not reported; RAS-inh=Renin-Angiotensin System inhibitor; STOP-Hypertension=Swedish Trial in Old Patients with Hypertension; UKPDS=UK Prospective Diabetes Study Group.

*Represents risk of bias based on: sequence generation of allocation; allocation concealment and blinding. + represents low bias risk and ± unclear bias risk.

Bangalore S et al Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ 2016; 352:i438.

Systolic Blood Pressure Intervention Trial

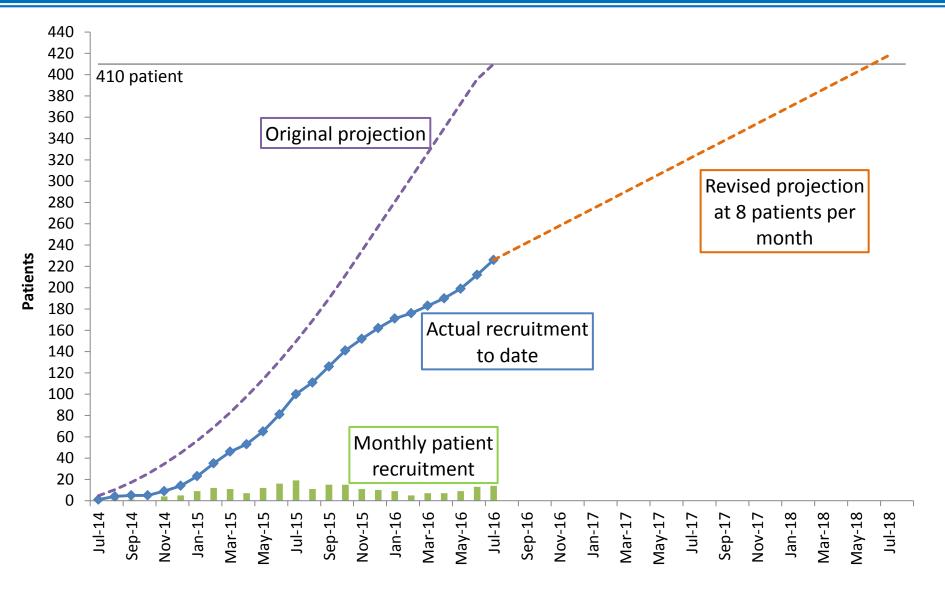

Renal Disease Outcomes

		Intensive		Standard			
		Events	%/yr	Events	%/yr	HR (95% CI)	Р
Participants	Participants with CKD at Baseline						
	Primary CKD outcome	14	0.33	15	0.36	0.89 (0.42, 1.87)	0.76
	≥50% reduction in eGFR*	10	0.23	11	0.26	0.87 (0.36, 2.07)	0.75
	Dialysis	6	0.14	10	0.24	0.57 (0.19, 1.54)	0.27
	Kidney transplant	0	-	0	-	-	
	Secondary CKD Outcome						
	Incident albuminuria**	49	3.02	59	3.90	0.72 (0.48, 1.07)	0.11
Participants	Participants without CKD at Baseline						
	Secondary CKD outcomes						
	≥30% reduction in eGFR*	127	1.21	37	0.35	3.48 (2.44, 5.10)	<.0001
SPRINT	Incident albuminuria**	110	2.00	135	2.41	0.81 (0.63, 1.04)	0.10

Participating sites

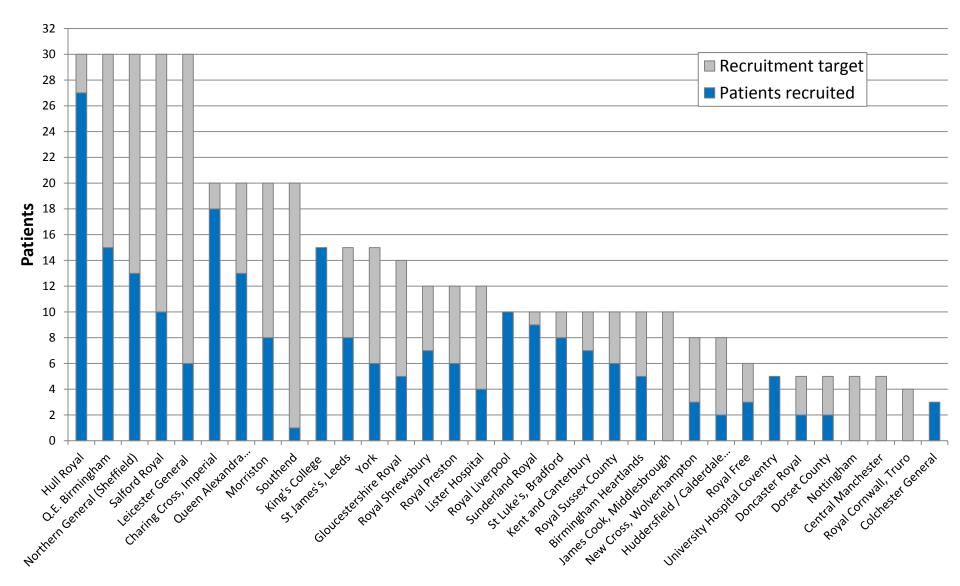
Graph and map of participating STOP-ACEi sites

- 33 UK renal units are open to patient recruitment
- There is still time for new sites to join



Patient Recruitment

Actual Patient Recruitment with Original and Revised Projections



Key recruitment figures

Total recruitment target	410
Recruitment to date	227 (55%)
Sum of site recruitment targets	439 (107%)
Average recruitment rate	9.0 patients per month
Average rate of recruitment per site	0.5 patients per month
Range of site recruitment rates	0.1 - 1.2 patients per month
Sites open to recruitment	33
Sites that have recruited ≥1 patient	29 (88%)
Sites that have recruited in 2016	25 (76%)

Recruitment per site against target

Recruitment issues

- Patient related
 - "feel too old"
 - Anxious to stop medication
 - Much effort required

• Trial related

- Inclusion criteria
- Progression and proteinuria
- Follow-up

Clinical Practice related

- "Think Kidneys program" stopping ACEi
- Drug Holiday program

Researcher related

- Movement of patients to peripheral units follow-up challenging
- Change in care pathway eg move to PD or HD or Tx