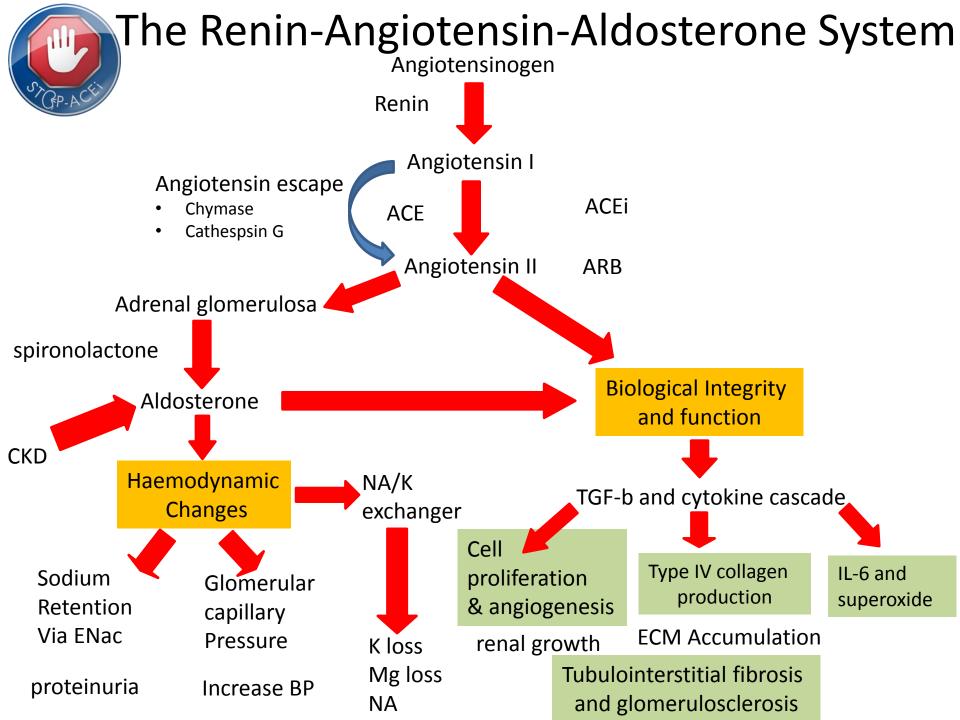
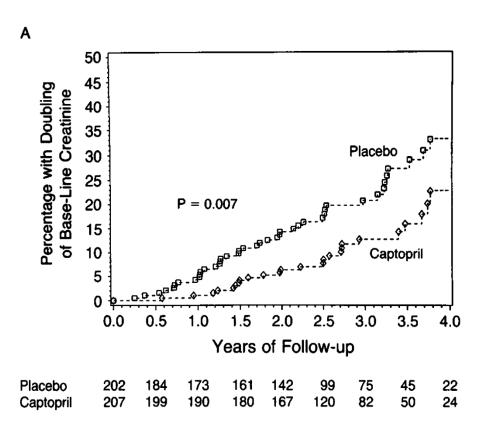
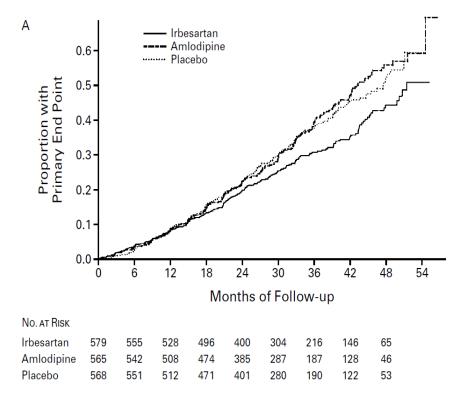

Angiotensin Converting Enzyme inhibitor (ACEi) / Angiotensin Receptor Blocker (ARB) - To STOP OR Not in **Advanced Renal Disease**

Investigator Meeting

1st May 2015, University of Birmingham Medical School

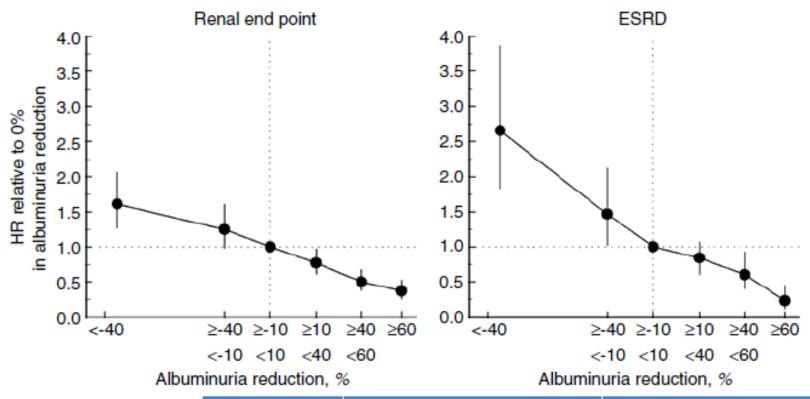



Aims


- Background and Rationale
 - Limiting renal progression
 - Cardiovascular disease and the kidney
 - Equipoise
- Trial Design
- Eligibility Criteria
 - Inclusion
 - Exclusion
- Objectives
 - Primary
 - Secondary
- New Research

Seminal - Lewis Studies

Lewis et al NEJM 1993 Lewis et al NEJM 2001



RCTs Demonstrating Benefit of ACEi and ARB on Kidney Outcomes

Study	N	Study arms	Study population	Proteinuric at baseline %	Proteinuri a reduced	Renal outcome
REIN	352	Ramapril Placebo	Non diabetic CKD	100	Yes	Decline in GFR
AIPRI	583	Benazapril Placebo	Non diabetic CKD	100	Yes	Doubling Scr or ESRD
RENAAL	1513	Losartan Placebo	Type II diabetes with Nephropathy	100	Yes	Doubling Scr or ESRD, death
IDNT	1713	Irbesartan Amlodipine placebo	Type II diabetes with Nephropathy	100	Yes	Doubling Scr or ESRD, death
AASK	1089	Ramapril Amlodipione Metoprolol	Hypertensive nephrosclerosis	33	Yes	Decline in GFR
Captopril LEWIS	409	Captopril Placebo	Type I diabetes with Nephropathy	100	Yes	Doubling Scr
Cooperative	240	Trandolaprol Losartan Comination	Non diabetic CKD	100	Yes	Doubling Scr or ESRD
Advanced CKD	328	Benazapril plaebo	Non diabetic CKD	100	yes	Doubling Scr or ESRD, death

RENAAL: Antiproteinuric effect of losartan explains the renal protective effect

	Outcome		Outcome Adjusted for proteinuria		
	RR (97% CI)	P value	RR (97% CI)	P value	
Primary Composite	16.1 (2.5-27.8)	0.022	1.7 (-14.5-15.5)	0.829	
ESRD	28.6 (11.5-42.4)	0.002	14.1 (-6.6-30.8)	0.168	

DE Zeeuw KI 2004

Studies with Renal Endpoints with RAAS blockage ? Generalisation to all levels of CKD

	Studies demonstrating endpoints		
Non diabetic	Baseline GFR (ml/min)	diabetic	Baseline GFR (ml/min)
MDRD	40	Captopril	68
AIPRI	52	IDNT	59
REIN	56	RENAAL	58
AASK	46	Bakris et al	59
COOPERATE	51		
	Studies demonstrating endpoints		
diabetic	Baseline GFR	Diabetic & non diabetic	Baseline GFR
ABCD	84	Casas J	74
Barnett A et al	93	ALLHAT	71-78
ACCOMPLISH	45	BENEDICT	79

ACEi in advanced CKD, creatinine > 273umol/L

422 patients with non-diabetic CKD:

Group 1: (SC 133-265µmol/L) received 20mg of benazepri/day

Group 2: (SC 274-442µmol/L) randomised to 20mg of benazepril/day or placebo and then followed for 3.4 years

43% decrease in the composite end point of doubling of serum creatinine level, ESRD, or death in the benazepril group compared to placebo.

Hou et al N Engl J Med 2006: 354: 131-140

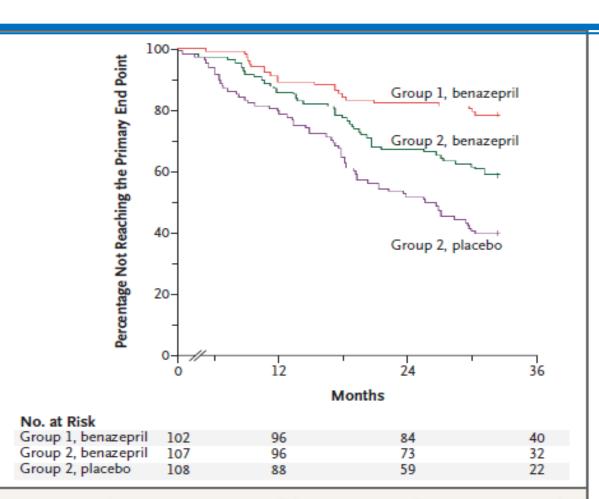


Figure 2. Kaplan–Meier Estimates of the Percentage of Patients Not Reaching the Primary Composite End Point of a Doubling of the Serum Creatinine Level, End-Stage Renal Disease, or Death.

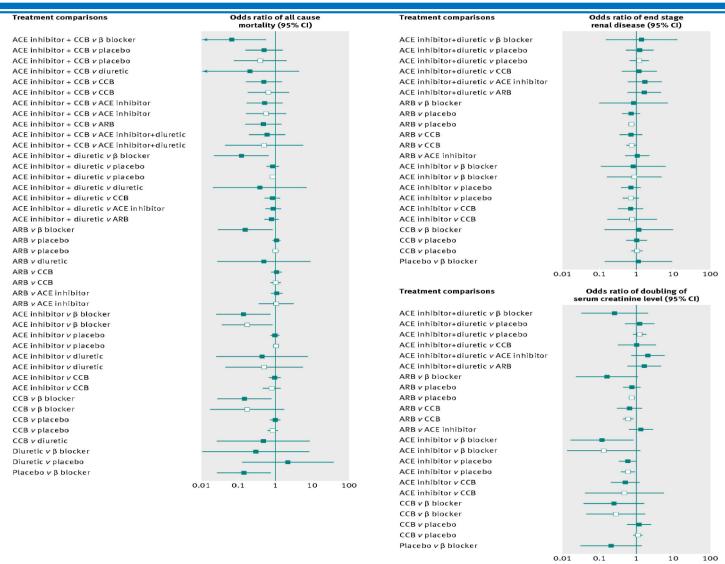
Group 1 had a serum creatinine level of 1.5 to 3.0 mg per deciliter, and group 2 had a serum creatinine level of 3.1 to 5.0 mg per deciliter at baseline.

ACEi cause Renal Progression?

Antihypertensive	RR	CI
ACEi	2.5	1.3-4.7
B-Blocker	0.8	0.5-1.4
ССВ	0.7	0.4-1.3
Thiazide	1.0	reference

Adjusted for age, sex, CVD and CCF: 7.8 y follow-up

Suissa et al KI 2006:69. 913-919


Is it all Blood Pressure?

Or a specific ACEi effect for CVD and CKD protection?

The data from AASK and REIN-2 with a 14 mmHg and 4.8 mmHg difference in systolic BP suggest that patients with substantially reduced kidney function would not derive similar benefit to RAAS blockade on CKD progression apart from BP lowering

Beneficial effects of lowering BP for CV protection and mortality is independent of drug class

On Target Study

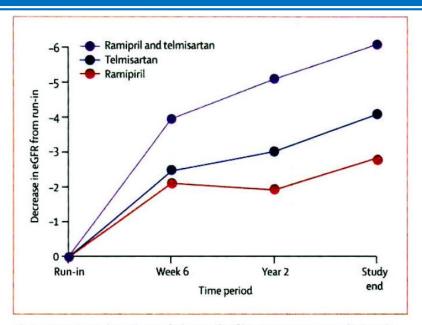
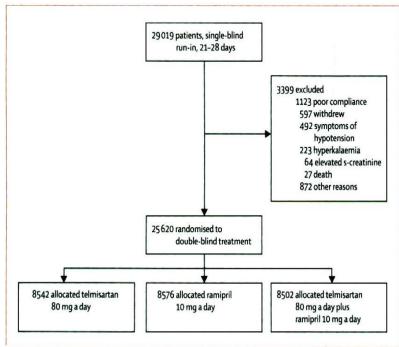
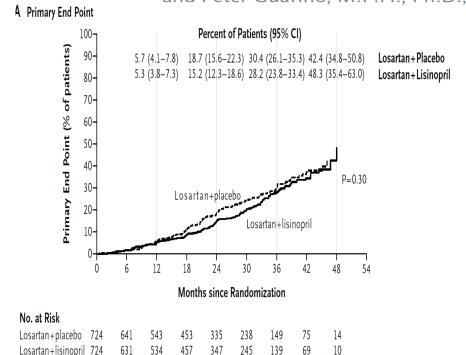
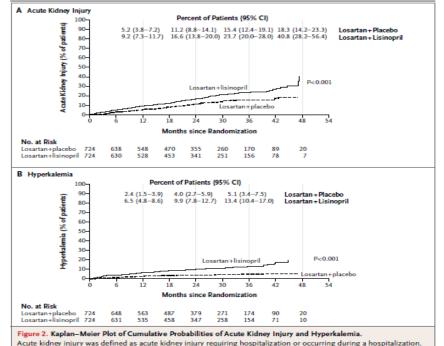



Figure 2: Decrease in estimated glomerular filtration rate (eGFR) during the trial, from baseline to study end

	Ramipril	Telmisartan	Ramipril+ telmisartan	Telmisartan vs ramipril p	Ramipril+telmisartan vs ramipril p
eGFR, baseline	73-7 (19-3)	73-6 (19-9)	73.4 (19.5)	0.915	0-388
eGFR change baseline to 6 weeks	-2.14 (12.9)	-2.51 (13.2)	-4.01 (13.3)	0-070	<0.0001
eGFR change baseline to 2 years	-1.96 (15.1)	-3.05 (15.1)	-5.12 (15.7)	<0.0001	<0.0001
eGFR change 6 baseline to final	-2.82 (17.2)	-4-12 (17-4)	-6.11 (17.9)	<0.0001	<0.0001
eGFR change 6 weeks to final	-1.17 (17.1)	-2.06 (17.1)	-2.49 (17.4)	0-0032	<0.0001

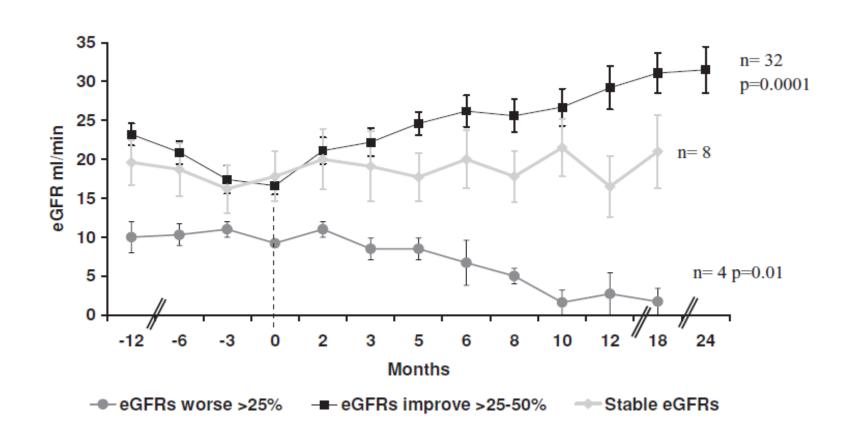

eGFR=estimated glomerular filtration rate (mL/min/1·73 m² [SD]). Number of participants with measurements=25 551 at baseline, 24 970 at 6 weeks, 22 573 at 2 years, 19 601 at study end.


Table 1: Estimated glomerular filtration rate at baseline and changes of eGFR

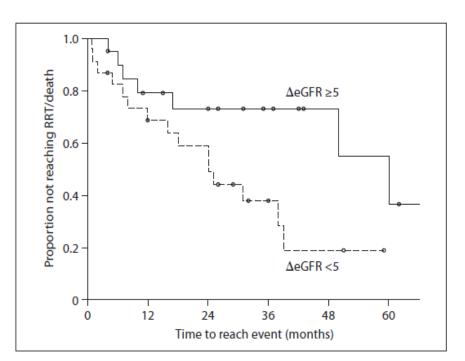
ORIGINAL ARTICLE

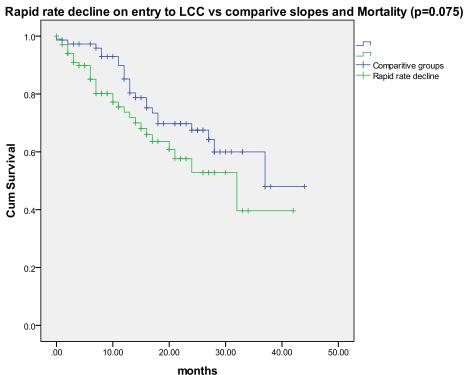
Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy

Linda F. Fried, M.D., M.P.H., Nicholas Emanuele, M.D., Jane H. Zhang, Ph.D., Mary Brophy, M.D., Todd A. Conner, Pharm.D., William Duckworth, M.D.,
David J. Leehey, M.D., Peter A. McCullough, M.D., M.P.H., Theresa O'Connor, Ph.D., Paul M. Palevsky, M.D., Robert F. Reilly, M.D., Stephen L. Seliger, M.D.,
Stuart R. Warren, J.D., Pharm.D., Suzanne Watnick, M.D., Peter Peduzzi, Ph.D., and Peter Guarino, M.P.H., Ph.D., for the VA NEPHRON-D Investigators*



Hyperkalemia was defined as a potassium level that was more than 6.0 mmol per liter or that required an emergency room visit, hospitalization, or dialysis. The P values were calculated with the use of a stratified log-rank test.


Change in GFR after stopping ACEi


Ahmed AK et al NDT 2009: 25; 3977-

A >4ml improvement in GFR was predictive of survival without RRT

Fig. 2. Kaplan-Meier estimates of patients surviving without RRT. Time zero is when RAS inhibitors were stopped. Events were RRT or death. Solid line: patients with *baseline* to *after* eGFR increment ≥5 ml/min/1.73 m² (Δ eGFR ≥5); dashed line: those with eGFR increment <5 ml/min/1.73 m² (Δ eGFR <5). log-rank test, p = 0.03.

Comparison of >4ml/min decline versus slow decline on mortality

Goncalves AR, El Nahas M et al Nephron Clinical Practice 2011: 119: 348-354 Brown O, Bhandari S Renal Assocatiaon 2013 (abstract)

EQUIPOISE for a Study

- As GFR falls below 30 ml/min (stages 4 to 5), the situation changes: the vessels stiffen and calcify, statins lose their effectiveness, the heart often fails and the evidence base for clinical decision making becomes scanty.
- Cardio-protective effect
 - No clear evidence of reduced or increased CV morbidity/mortality
 - In non CKD many studies YES
 - Heart failure some post hoc evidence
 - No studies in advanced non dialysis CKD
- Anti-proteinuric effect is it important in advanced CKD?
 - ?less relevant due to severe glomerulosclerosis
- Causes progressive renal dysfunction
 - Increase hyperkalaemia
 - ? Sudden cardiac death
 - Increase anaemia and potentially ESA use

Retardation of CKD progression may be a strategy for CVD Protection

Decline in Estimated Glomerular Filtration Rate and Subsequent Risk of End-Stage Renal Disease and Mortality

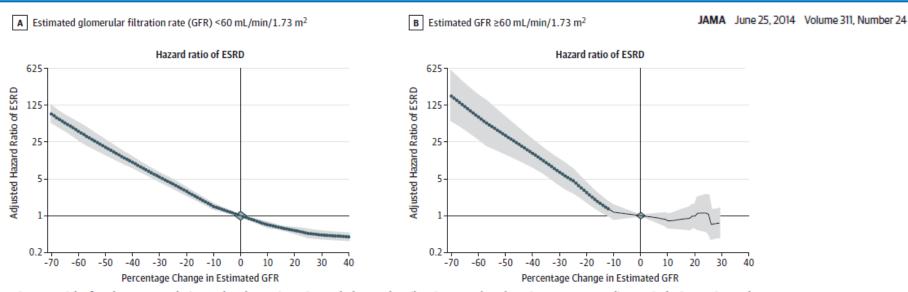
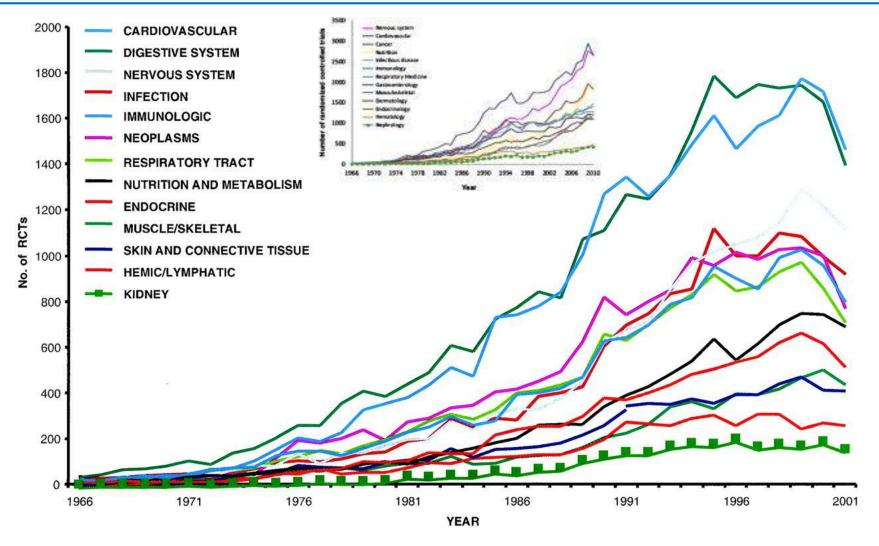



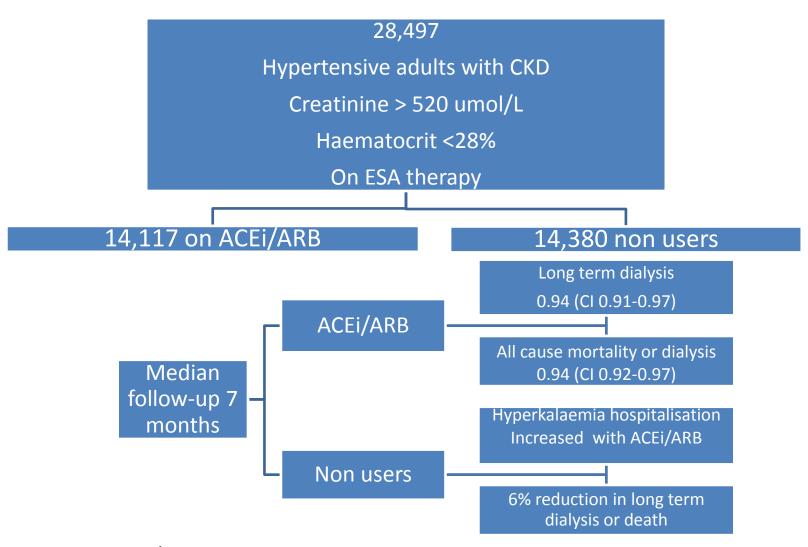
Figure 2. Risk of End-Stage Renal Disease by Change in Estimated Glomerular Filtration Rate (GFR) During a 2-Year Baseline Period, First Estimated GFR, and Subsequent Follow-up

First Estimated		Change in Estimated GFR During 2-Year Baseline Period, %					
GFR During a 2-Year Baseline Period	Follow-up After Last Estimated GFR, y	-57	-40	-30	-25	-20	0 (Stable)
	1	63	31	19	15	11	3.9
70	3	97	72	52	43	34	13
20	5	100	94	80	71	60	26
	10	100	100	99	97	92	57
35	1	20	8.1	4.8	3.7	2.7	0.95
	3	54	25	16	12	9.2	3.3
	5	82	47	31	25	19	7.0
	10	99	83	64	55	44	18

RCTs for intervention in Kidney Disease

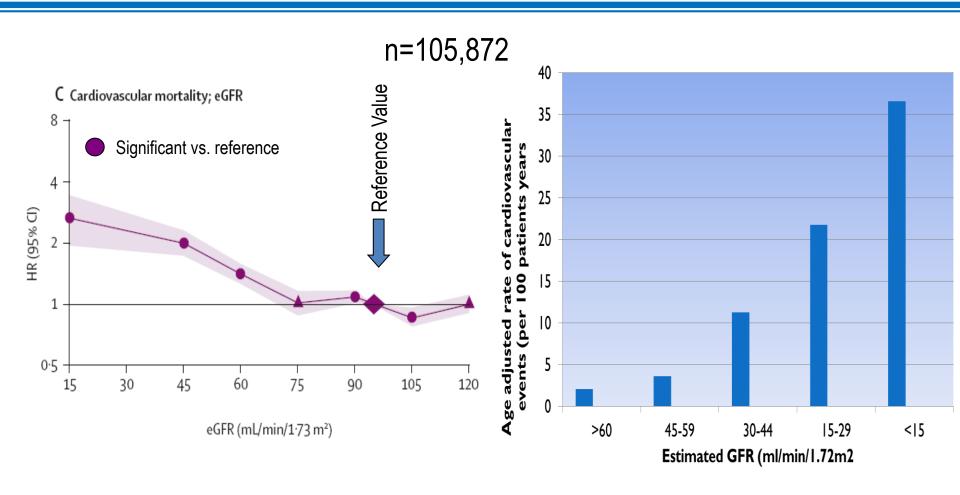
Strippoli GFM et al JASN 2004; 15, 411-419

View of Clinicians on ACEi/ARBs


- 141,413 US veterans with CKD
- GFR >60 mls/min + proteinuria v GFR <60 ml/min
- ACEi/ARB use declined in patients as their eGFR declined

 Patients taking ACEi/ARB had lower risk for mortality (HR 0.81: CI 0.78-0.84)

Prospective Cohort Study


Effectiveness and safety of ACEi/ARB use in advanced CKD

Hsu TW et al JAMA 2014

Kidney function is an independent risk factor for CV mortality in the general population

CKD Prognosis Consortium Lancet Matsushsita et al 2010; 375: 2073–2081 Go et al 2004

"Heat Maps" of risk in CKD patients

Levey AS et al, Kidney Intern 2011;80-17-28

All-cause mortality

ACR ACR ACR ACR >300 10-29 30-299 <10 eGFR 1.1 1.5 2.2 5.0 > 105 eGFR Ret 1.4 1.5 3.1 90-105 eGFR 1.0 1.3 1.7 2.3 75-90 eGFR 1.8 2.7 1.0 1.4 60-75 eGFR 1.3 1.7 2.2 3.6 45-60 eGFR 1.9 2.3 3.3 4.9 30-45 eGFR 5.3 3.6 4.7 6.6 15-30

Cardiovascular mortality

	ACR <10	ACR 10-29	ACR 30-299	ACR ≥300
eGFR > 105	0.9	1.3	2.3	2.1
eGFR 90-105	Ref	1.5	1.7	3.7
eGFR 75-90	1.0	1.3	1.6	3.7
eGFR 60-75	1.0	1.4	2.0	4.1
eGFR 45-60	1.5	2.2	2.8	4.3
eGFR 30-45	2.2	2.7	3.4	5.2
eGFR 15-30	14.	7.9	4.8	8.1

Summary of relative risks from categorical meta-analysis (dipstick included) (-, ±, +, ≥++)

Kidney failure (ESRD)

	ACR <10	ACR 10-29	ACR 30-299	ACR ≥300
eGFR > 105	Ref	Ref	7.8	18
eGFR 90-105	Ref	Ref	11	20
eGFR 75-90	Ref	Ref	3.8	48
eGFR 60-75	Ref	Ref	7.4	67
eGFR 45-60	5.2	22	40	147
eGFR 30-45	56	74	294	763
eGFR 15-30	433	1044	1056	2286

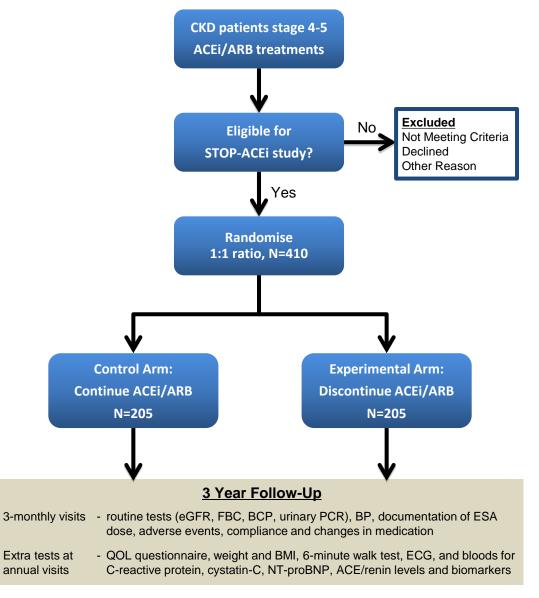
Acute kidney injury (AKI)

	ACR <10	ACR 10-29	ACR 30-299	ACR ≥300
eGFR > 105	Ref	Ref	2.7	8.4
eGFR 90-105	Ref	Ref	2.4	5.8
eGFR 75-90	Ref	Ref	2.5	4.1
eGFR 60-75	Ref	Ref	3.3	6.4
eGFR 45–60	2.2	4.9	6.4	5.9
eGFR 30-45	7.3	10	12	20
eGFR 15-30	17	17	21	29

Progressive CKD

	ACR <10	ACR 10-29	ACR 30-299	ACR ≥300
eGFR > 105	Ref	Ref	0.4	3.0
eGFR 90-105	Ref	Ref	0.9	3.3
eGFR 75-90	Ref	Ref	1.9	5.0
eGFR 60-75	Ref	Ref	3.2	8.1
oGFR 45-60	3.1	4.0	9.4	57
eGFR 30-45	3.0	19	15	22
eGFR 15-30	4.0	12	21	7.7

Trial Purpose - Main Research Question - Hypothesis


Stopping ACEi or ARB treatment, compared with continuing on these treatments, improves or stabilises renal function in patients with progressive stages 4 or 5 CKD based on assessment of renal function using the MDRD 4variable eGFR at 3 years follow-up (provided good blood pressure control is maintained)

TRIAL DESIGN

- An investigator led
 - multi-centre
 - open-label
 - randomized controlled
 - clinical study
 - 410 participants
 - advanced progressive CKDStage 4/5
 - receiving ACEi and/or ARBs

TARGET BP <140/85

Eligibility

Key Inclusion Criteria

- Aged ≥18 years (male or female)
- CKD stage 4 or 5 (eGFR
 <30mls/minute using the MDRD
 equation) and not on dialysis therapy
- Progressive deterioration in renal function (fall in eGFR of >2ml/min/year)
- Treatment with either an ACEi or ARB or a combination of both for >6 months with at least 25% of the maximum recommended daily dose
- Resting blood pressure (BP) ≤160/90 mmHg
- At least 3 months of specialist renal follow-up at the time of entry into the trial

Key exclusion criteria

- Aged <18 years
- Undergoing dialysis therapy
- Previous kidney transplant
- Uncontrolled hypertension (>160/90mmHg) or requirement for 5 or more agents to control BP
- History of myocardial infarction or stroke in preceding 3 months
- Immune mediated renal disease requiring disease specific therapy

Pre- specified Minimisation Variables

Pre-specified

- Diabetes Mellitus
- Blood pressure MAP <100 or ≥ 100 (diastolic x2=systolic/3)
- Age <65 or ≥ 65 years
- Proteinuria PCR <100 or ≥ 100 mg/mmol
- eGFR <15 or ≥ 15 ml/min

Objectives - End-point

410 patients with eGFR <30ml/min and >2ml/min/year loss of eGFR and BP ≤160/90 mmHg and on ACEi/ARB for at least 3 months

ACEI/ARB STOP- ACEI

Primary Endpoint = eGFR based on MDRD at 3 years (effect size 0.31 with 80% power and alpha =0.05)

BP

RRT/>50% decline

Time to reach ESRD/RRT

Cystatin C

Hospitalisation rates

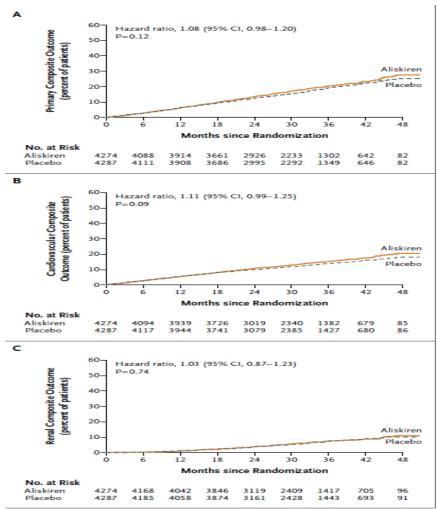
6 minutes walk test

Cardiac events

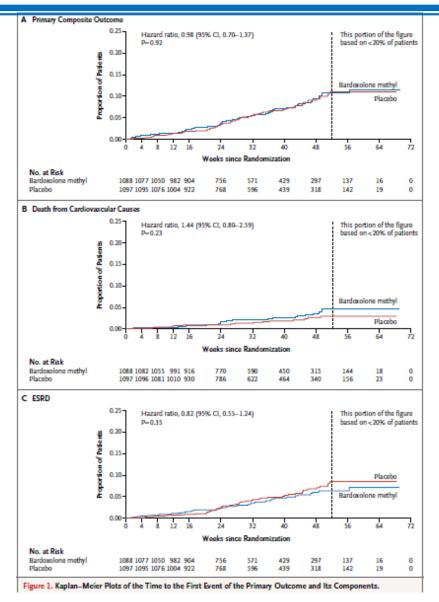
Survival

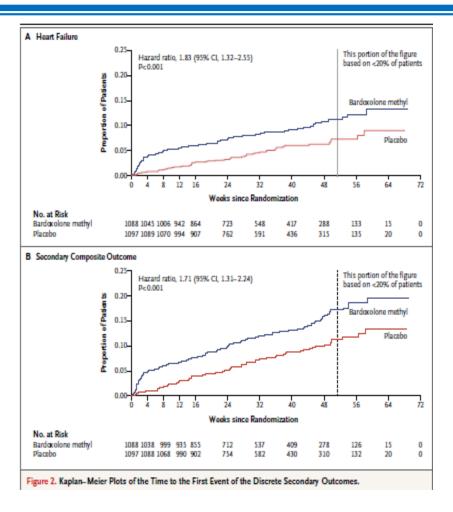
KD QOL

Urine PCR
Hb concentration
ESA use


Recent and Future Potential Targets to Slow Progression of CKD

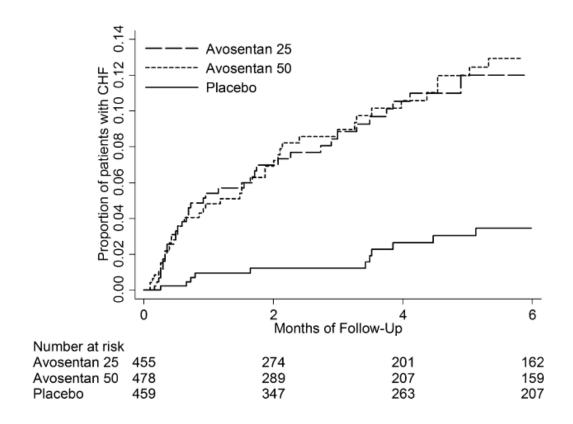
- Inflammatory and fibrotic targets
 - Aliskerin
 - Bardoxylone (BEACON and BEAM)
 - TGF- beta
 - Cytokine retention products
 - Complement fragment products
- Aldosterone Antagonist
- SONAR
- Allopurinol
- Tolvaptan
- Oxidative stress
 - Reactive oxygen species
- Notch pathway
- APOL1


Cardiorenal End Points in a Trial of Aliskiren for Type 2 Diabetes


Event	Any Event Reported		P Value	Event Leading Study-Drug Di		P Value
	Aliskiren (N=4272)	Placebo (N=4285)		Aliskiren (N=4272)	Placebo (N=4285)	
	no. of pat	ients (%)		no. of pati	ents (%)	
Hyperkalemia	1670 (39.1)	1244 (29.0)	< 0.001	205 (4.8)	111 (2.6)	< 0.001
Peripheral edema	686 (16.1)	706 (16.5)	0.60	11 (0.3)	7 (0.2)	0.34
Hypotension	519 (12.1)	357 (8.3)	< 0.001	28 (0.7)	13 (0.3)	0.02
Diarrhea	417 (9.8)	312 (7.3)	< 0.001	11 (0.3)	7 (0.2)	0.34
Hypertension	429 (10.0)	469 (10.9)	0.17	3 (0.1)	9 (0.2)	0.15
Renal impairment	418 (9.8)	371 (8.7)	0.07	65 (1.5)	54 (1.3)	0.30
Nasopharyngitis	405 (9.5)	383 (8.9)	0.39	1 (<0.1)	0	NA
Hypoglycemia	393 (9.2)	341 (8.0)	0.04	1 (<0.1)	3 (0.1)	NA
Back pain	363 (8.5)	353 (8.2)	0.67	1 (<0.1)	2 (<0.1)	NA
Dizziness	327 (7.7)	314 (7.3)	0.57	4 (0.1)	4 (0.1)	NA
Urinary tract infection	326 (7.6)	288 (6.7)	0.10	4 (0.1)	2 (<0.1)	NA
Anemia	316 (7.4)	307 (7.2)	0.68	0	0	_
Pain in extremity	302 (7.1)	317 (7.4)	0.56	1 (<0.1)	2 (<0.1)	NA
Arthralgia	302 (7.1)	313 (7.3)	0.67	0	1 (<0.1)	NA
Cough	265 (6.2)	283 (6.6)	0.45	1 (<0.1)	1 (<0.1)	NA
Bronchitis	242 (5.7)	239 (5.6)	0.86	0	0	_
Dyspnea	223 (5.2)	213 (5.0)	0.60	6 (0.1)	5 (0.1)	0.76
Upper respiratory tract infection	223 (5.2)	229 (5.3)	0.80	1 (<0.1)	0	NA
Cataract	229 (5.4)	223 (5.2)	0.75	0	0	_
Constipation	203 (4.8)	241 (5.6)	0.07	0	1 (<0.1)	NA
Headache	200 (4.7)	220 (5.1)	0.33	2 (<0.1)	4 (0.1)	NA

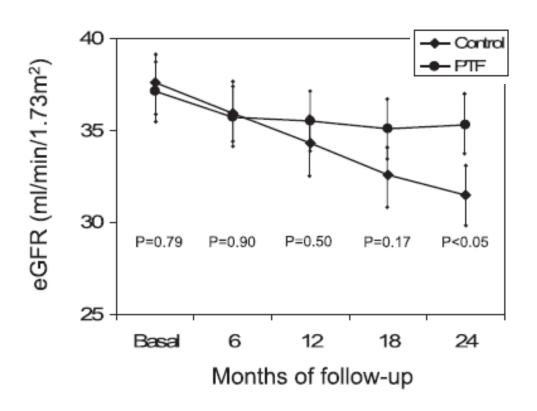
Bardoxolone Methyl in Type 2 Diabetes and Stage 4 Chronic Kidney Disease

Meta-analysis of Endothelin Antagonists


5 RCTs including the ASCEND Study Endothelin Antagonist vs Placebo n = 2034 participants

	% benefit/harm	RR	CI
Albuminuria	31% reduction	0.69	0.56-0.77
Death	NS	1.49	0.31-2.73
Cardiovascular Events	45% increase	1.45	1.07-1.97
Other serious Adverse Events	32% increase	1.32	1.1-1.51

Predictors of Congestive Heart Failure after Treatment with an Endothelin Receptor Antagonist


Jamo Hoekman,* Hiddo J. Lambers Heerspink,* Giancarlo Viberti,[†] Damien Green,[‡] Johannes F.E. Mann,^{§||¶} and Dick de Zeeuw*

Effect of Pentoxifylline on Renal Function and Urinary Albumin Excretion in Patients with Diabetic Kidney Disease: The PREDIAN Trial

Juan F. Navarro-González,*^{†‡} Carmen Mora-Fernández,^{†‡} Mercedes Muros de Fuentes,^{‡§} Jesús Chahin,* María L. Méndez,* Eduardo Gallego,* Manuel Macía,* Nieves del Castillo,* Antonio Rivero,* María A. Getino,* Patricia García,* Ana Jarque,* and Javier García*

	PTF	Placebo
GFR 1 y ml/min	-1.2	-3.4
GFR 2 y ml/min	-2.1	-6.5
Monthly rate	0.08±0.14	0.27±0.8
ACR mg/dL	-13	+4.9
BP mmHg	140.8 85	139.8 83.8

J Am Soc Nephrol 26: 220-229, 2015

LCZ696 (nephrilysin inhibitor) sacubitril and valsartan

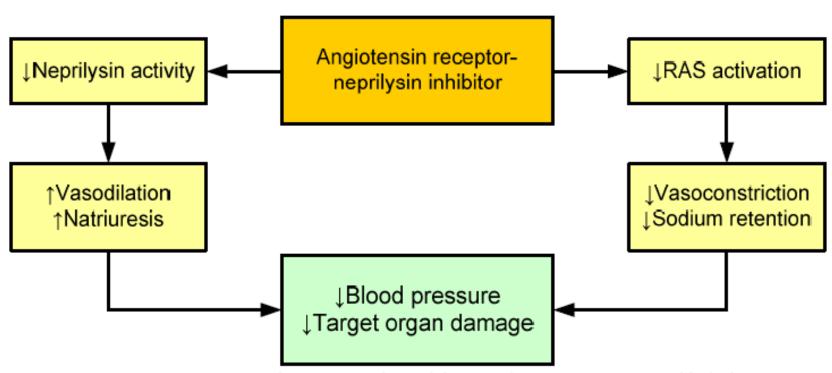
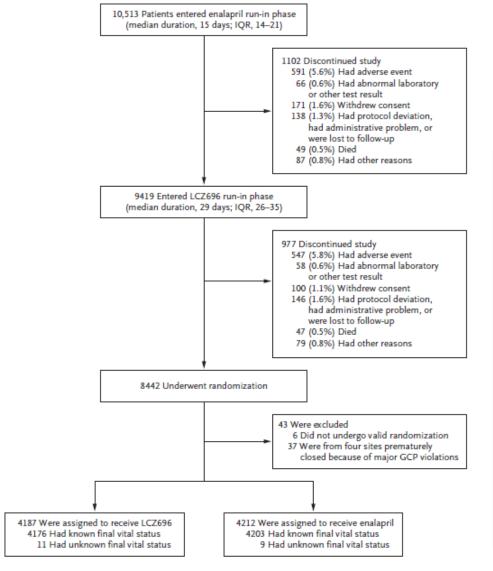


Figure 2: Putative synergy between neprilysin inhibition and angiotensin 2 receptor blockade


HARPIII Study in CKD

PARADIGM-HF

McMurray JJ et al N Eng Journal of Med 2014, 371: 993-1004

Paker M et al Circulation 2014

LCZ696 (nephrilysin inhibitor) sacubitril and valsartan 400mg BD

Enalapril 10mg BD

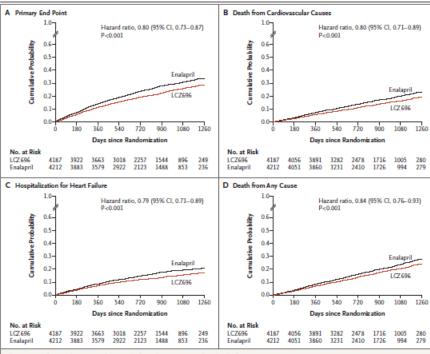
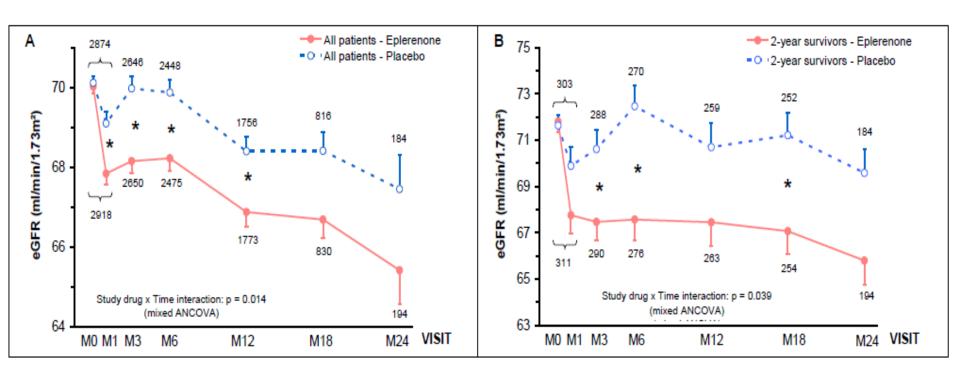
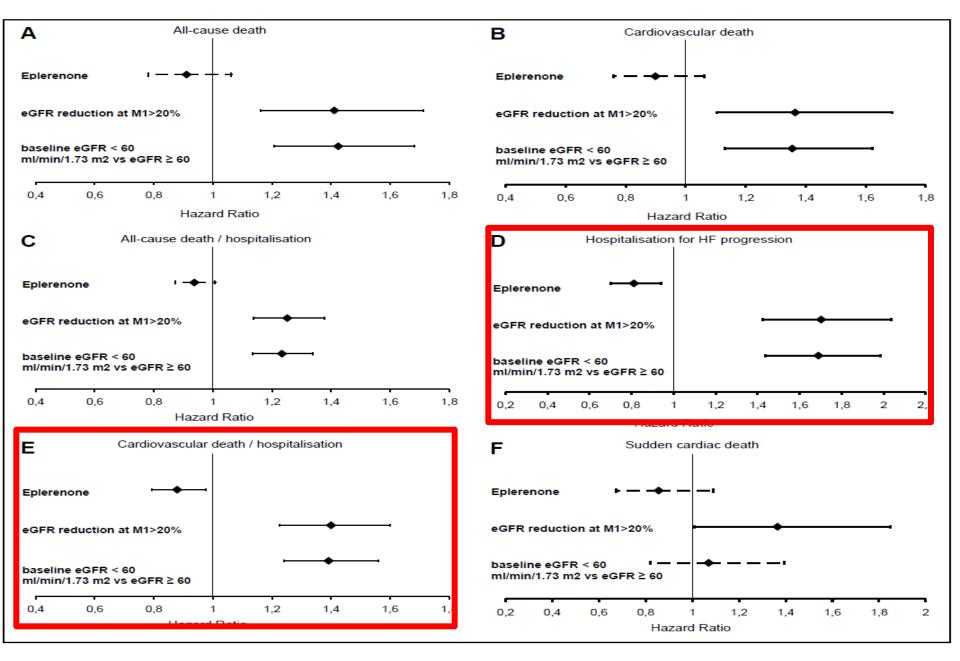



Figure 2. Kaplan–Meier Curves for Key Study Outcomes, According to Study Group.

Shown are estimates of the probability of the primary composite end point (death from cardiovascular causes or first hospitalization for heart failure) (Panel A), death from cardiovascular causes (Panel B), first hospitalization for heart failure (Panel C), and death from any cause (Panel D).



Aldosterone Antagonists Effects on Renal Function

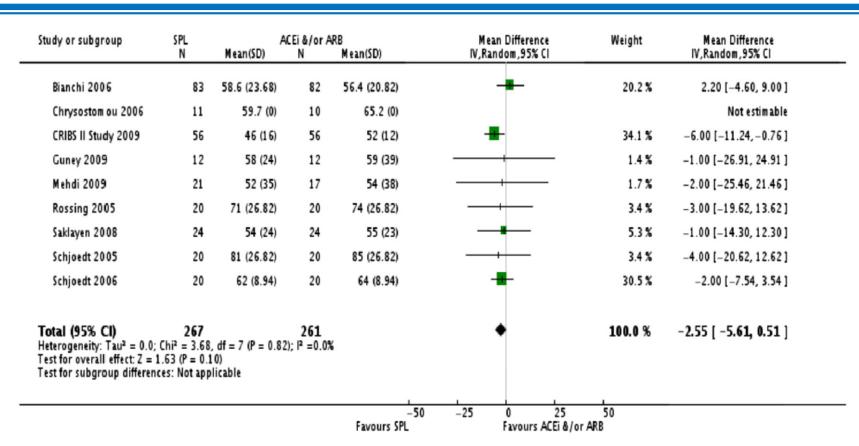

Early decline in renal function compared to placebo 1.4ml/min which persisted after 2 years and after sensitivity analysis

Figure 2: Influence of early worsening renal function on cardiovascular outcomes

Meta-analysis of treatment studies, mineralocorticoid receptor blocker therapy added to ACEi or ARBs

No significant affect on eGFR compared to ACEi or ARB alone

Bolignano D et al Cochrane Database Syst Rev 2014; CD007004

Spironolactone Studies

MiREnDa Study

Mineralocorticoid Receptor Antagonists in End Stage Renal Disease Primarily looking at intermediate cardiovascular outcomes - LV mass index, LV geometry, LV function, and so forth

ALCHEMIST

Conducted in Belgium, using spironolactone 25 mg daily and looking at harder cardiovascular outcomes

SONAR (Study Of Diabetic Nephropathy with Atrasentan) to assess the effects of atrasentan - when added to standard care - on renal progression in patients with CKD 2-4 & DMII

Randomized, double-blind, parallel, placebo-controlled, multicenter study

Inclusion criteria

eGFR 25 to 75 mL/min/1.73 m²
UACR >300 and <5,000 mg/g
systolic blood pressure within 110 and 160 mgHg

Primary endpoint: Effect of atrasentan on time to doubling of serum creatinine or the onset of ESRD, as defined by need for chronic dialysis, transplant or death due to renal failure.

Secondary endpoints; Effects of atrasentan on UAE, eGFR and cardiovascular events including cardiovascular death, heart attack and stroke. Quality of life evaluations .

Receive atrasentan 0.75 mg/day for 6 weeks to determine their UACR response and to assess tolerability of atrasentan.

3,150 responders (UACR reduction \geq 30 percent from baseline) and approximately 1,000 non-responders (UACR < 30 percent reduction from baseline) will be randomized 1:1 into a double-blind treatment period, which will continue for approximately 48 months

Advice about using ACEi & ARBs in CKD

Does the patient really need to be on an ACEi or ARB?

- Care should always be taken with the frail elderly.
- ACEi and ARBs have no renoprotective effects over other anti-hypertensives unless the patient has type 1 diabetes or hypertension and significant proteinuria (PCR >100mg/mmol or ACR >70mg/mmol).
- ACEi or ARBs are only specifically indicated in patients with CKD if they have hypertension and significant proteinuria.

Measure serum creatinine and potassium

- A rise in sCr of up to 25% above baseline is acceptable.
- A rise in potassium up to 6mmol/L is safe.
- If the potassium is >6mmol/L: review all drugs; reduce or stop the ACEi or ARB; give appropriate dietary advice.

Avoid excessive hypotension

 For most elderly patients (>80 years old) a systolic blood pressure of around 160mmHg is probably acceptable.

Advice about using ACEi & ARBs in CKD

Suspected renal artery stenosis (RAS)

Patients at risk of RAS are those with widespread vascular disease, are usually severely
hypertensive and may have had episodes of flash pulmonary oedema. A very large rise
in sCr (more than 50% of baseline) in high risk patients may signify RAS. If this occurs
stop the ACEi or ARB and discuss with a nephrologist.

Avoid other nephrotoxic drugs

 Specifically NSAIDs, trimethoprim and potassium sparing diuretics. A small number of patients do benefit from combinations of all of the above with ACEi or ARBs. Patients should be warned about NSAIDs bought over the counter.

"Sick day rules"

 Patients should be advised to seek medical or nursing advice early if they develop a severe dehydrating illness or symptoms of hypotension. Interrupting the ACEi or ARB for a few days may prevent avoidable AKI.

• Re-introduction of ACEi/ARBs

 Where ACEi or ARBs are essential (e.g. in cardiac failure) and need to be re-introduced after being stopped, it is advisable to recommence with a low dose and titrate up as clinically indicated.

QUESTIONS