Development of a flow cytometry-based potency assay for measuring the in vitro immunomodulatory properties of mesenchymal stromal cells

Andreia Ribeiro, Thomas Ritter, Matthew Griffin, Rhodri Ceredig (Professor) *

Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, National University of Ireland, Galway, Ireland

1. Introduction

In the last decade, several studies have emerged demonstrating that autologous and allogeneic culture-expanded mesenchymal stromal cells (MSC) from different sources possess immunomodulatory properties [1–3]. It has been convincingly shown that such immunomodulatory properties of MSC play specific roles in the maintenance of peripheral transplantation tolerance, autoimmunity and tumour evasion [1]. The anti-inflammatory activities of both autologous and allogeneic MSC are being exploited clinically with administration of MSC now being used to treat or prevent a range of immune/inflammatory diseases such as Graft-versus-Host-disease (GvHD), inflammatory bowel disease, diabetes mellitus, multiple sclerosis, organ transplant rejection, myocardial infarction and stroke [4–6].

Currently, there are at least 572 on-going clinical trials worldwide which aim to exploit the anti-inflammatory and immunomodulatory properties of MSC (www.clinicaltrials.gov). Global commercialization activities in the stem cells market have increased dramatically during the past decade with the establishment of several heavily capitalized companies focusing on MSC manufacturing and cryopreservation [2]. As more individual MSC sources and products are developed and trialled as clinical products and as the regulatory framework for clinical trials of stem cell products continues to evolve, there will be a clear need to...
confirm and compare the potency of the immunomodulatory/anti-inflammatory effects of each product for optimal treatment of disease [7–9].

The immunomodulatory activities of MSC in vitro have been measured on different immunological cell types, including T cells, B cells, NK cells and monocytes [10–13]. Monocytes have critical roles in innate and adaptive immunity during infection and sterile inflammation and respond rapidly to activation signals via an array of pattern recognition receptors [14–16]. Monocytes circulate in the peripheral blood and upon stimulation, transmigrate into injured or infected tissues where they contribute immediately to early inflammatory responses and subsequently may differentiate into mature myeloid effector cells including macrophages and dendritic cells [17]. During inflammation, monocytes produce several key pro-inflammatory mediators including tumour necrosis factor alpha (TNF-α), interleukin 12 (IL-12), interleukin 6 (IL-6) and monocyte chemo-attractant protein 1 (MCP-1/CCL2) [4,14]. TNF-α is involved in the pathogenesis of several diseases such as arthritis, sepsis, acute tissue ischemia, inflammatory bowel disease and GVHD. MSC administration could be used to decrease the severity of inflammation [18–21].

In this study we describe the development of a flow cytometry-based whole blood assay to screen for potency of human bone marrow-derived MSC (hBM-MSC) to suppress innate immune responses. A key goal was to develop an assay methodology with potential to be rapidly and practically employed in cell manufacturing facilities to allow for the optimal selection of MSC donors or at point of care to facilitate “personalized” matching of a cell product to each patient.

2. Methods

2.1. Optimization of monocyte activation to use by flow cytometry

Peripheral blood from a total 10 healthy adult volunteers ranging in age from 24–64 from years was collected into BD Vacutainer tubes (Sodium heparin ref. 367876, K3 EDTA ref. 367873 and Sodium Citrate ref. 363095), according to the protocol approved by the ethics committee of the National University of Ireland in Galway. Once collected, blood was normally used within three hours. However, blood could be stored up to 72 h prior to testing (see results). In deep round bottom 96 well plates (736-0339 VWR) was added RPMI 1640 media (Gibco), Brefeldin A (eBioscience), ultrapure LPS-EB (InvivoGen) and blood at concentrations indicated below. The plates were sealed and incubated for different lengths of time at 37 °C in a humidified incubator containing 5% CO2 in air. Then, cells were surface stained for 10 min at room temperature in the dark with the following monoclonal antibodies (all from eBioscience): CD16 FITC (clone eBioCB16), CD45 PerCP Cy5.5 (clone 2D1), and CD14 APC (clone 61D3). Following washing, fixation and permeabilization using the IntraPrep Kit from Beckman Coulter, cells were stained intra-cytoplasmically with PE labelled monoclonal anti-TNF-α antibody (clone MAB11). In some experiments, cells were labelled with PE-labelled anti-IL-12/IL-23 p40 (clone C8.6), anti-CC12 (MCP-1; clone 2H5) or anti-IL-10 (clone E53-9D7). Subsequently, samples were washed, resuspended in FACS buffer (1X PBS, 2% FBS, 0.05% NaN3) and acquired using the BD Accuri C6 (Becton Dickinson) 4 colour flow cytometer. Data were analysed with BD CSample Analysis software (Becton Dickinson) or FlowJo version 10 (Tree star). As outlined in results, experiments were designed to determine the optimal conditions of anticoagulants, LPS dose, incubation time and blood dilution to use in the immunosuppressive assay.

For T cell activation, three activation protocols were used, namely i) PMA (5 ng/mL) plus ionomycin (0.5 μg/mL), ii) PHA (10 μg/mL) or iii) anti-CD3 + anti-CD28 40Dyneabeads.

2.2. Calcium chelation and analysis of LPS surface binding

To determine the effect of calcium chelation, heparinized blood diluted 2 times was cultured for 4 h with 0.6 μg/mL Brefeldin A, with or without addition of 1 ng/mL of LPS and in the presence or absence of 2 mM ethylene glycol tetra acetic acid (EGTA, Sigma-Aldrich). After activation, cells were stained, fixed and permeabilized as described above. In other experiments 1 × 10^6 MSC or peripheral blood mononuclear cells (PBMC) isolated by ficoll density gradient centrifugation were resuspended in Dulbecco’s phosphate buffered saline without CaCl2 and MgCl2 (DPBS, Gibco) and stimulated at room temperature for 30 min with or without 1 μg/mL biotinylated LPS (LPSbiotin) in the presence or absence of 2 mM EGTA. Ultrapure LPS-EB was biotin labelled using Biotin amidocaproate N-Hydroxysuccinimide ester (Sigma-Aldrich), according to the protocol described by Brunialti et al. 2002 [22]. After activation, PBMC were washed twice using DPBS, incubated with CD45 PerCP Cy5.5, and CD14 APC for 10 min at room temperature and light protected. After washing twice PBMC and MSC, the bound LPSbiotin was revealed by adding Streptavidin PE for 10 minutes min. Following an additional wash, cells were finally resuspended in DPBS for acquisition on the BD Accuri C6 and LPS binding to monocytes or MSC, the latter distinguished by their larger FSC/SSC profile, recorded.

2.3. Isolation and expansion of hBM MSC

Bone Marrow (BM) aspirates were obtained from the iliac crest of healthy donors between the ages of 19 and 24. From each donor, a trained physician collected 30 mL of BM aspirate into sodium heparin tubes under sterile conditions in a clinical procedure room at Galway University Hospital. Enrolment of healthy adult volunteers and collection of bone marrow samples for the purpose of generating culture-expanded MSC was approved by the Research Ethics Committee of Galway University Hospitals.

The bone marrow aspirate was diluted with DPBS and filtered through 70–100 μm cell strainer (BD Falcon). Mononuclear cells (MNC) were isolated from BM aspirates by Ficoll density gradient centrifugation. Viable cell numbers in MSC suspensions were calculated using Trypan Blue exclusion (Sigma-Aldrich). The first plating was at a cell density of 5 × 10^4 cells/cm^2 in Nunc™ EasYFlasks, cell culture flasks (Thermo Scientific) with complete medium, namely MEM Alpha with Glutamax (Gibco) supplemented with 10% (v/v) Fetal Bovine Serum (FBS – HyClone; Thermo Scientific) and 1% (v/v) Penicillin/Streptomycin (P/S – Life Technologies), for 4 days at 37 °C in a humidified incubator containing 5% CO2 in air. After 4 days, non-adherent cells were gently removed with DPBS and fresh complete medium added. When cells reached 80–90% confluence in passage 0 (P0) or P1, MSC were detached using 0.25% Trypsin-EDTA (Life Technologies), and the Trypsin inactivated by adding 10X volume of complete medium. Detached cells were then centrifuged (250g for 5 min at room temperature) and counted.

MSC: were cryopreserved at 1 × 10^7 cell/mL with freezing medium: FBS (HyClone; Thermo Scientific) containing 10% (v/v) DMSO (Sigma-Aldrich D2650). When required, MSC were thawed, washed extensively and seeded at a density of 5 × 10^3 cells/cm^2 into cell culture flasks with complete medium and cultured as before. The medium was renewed every two days until the cells reached 80–90% confluence. For passaging, MSC were detached, centrifuged (250g for 5 min at room temperature), counted and seeded again at 3 × 10^3 cells/cm^2. To use the cells for co-culture with periph-
eral blood monocytes, MSC were kept in culture until they reached 90–100% confluence and then detached and counted.

2.4. Immunophenotyping

The immunophenotypic characterization of hBM-MSC was performed on the day they were used for co-culture. Using the human MSC analysis kit (562245) from BD StemflowTM, 2 × 10^5 cells were stained according to the manufacturer’s protocol with antibodies against CD44, CD73, CD90, CD105, CD11b, CD19, CD34, CD45, HLA-DR and Propidium Iodide (Sigma-Aldrich). The samples were acquired in the BD Accuri C6 flow cytometer and analysed with FlowJo version 10.

2.5. Optimised immunosuppressive assay protocol

This assay is divided in 2 parts. Firstly, MSC was co-cultured with peripheral blood and then monocytes stained intra-cytoplasmically for TNF-α expression, using the same protocol as described above. To prepare the co-culture, peripheral blood collected as described above was diluted 10X with RPMI 1640 media (Gibco). To each well was added 50 μL of this diluted blood. Based on the average monocyte counts from n = 10 donors, obtained using data from the Accuri C6 cytometer, this corresponded to 7500 monocytes, a figure sufficient to obtain adequate events from subsequent flow cytometric analysis. The blood was cultured with 0.6 μg/mL Brefeldin A (eBioscience), with or without Ultrapure LPS-EB (InvivoGen) at 1 ng/mL. hBM-MSC at passages P2 – P7 were added to the culture in different numbers of viable cells (2.5 × 10³, 5 × 10³, 1 × 10⁴, 2.5 × 10⁴, 5 × 10⁴, 1 × 10⁵, 2 × 10⁵, 4 × 10⁵, 5 × 10⁵ cells/well) and incubated for 6 h at 37 °C in a humidified incubator containing 5% CO₂ in air. For flow cytometry experiments, the viability of monocytes and MSC was determined by Propidium Iodide exclusion.

As positive controls for the inhibition of monocyte activation by LPS, either 10 ng/mL of Dexamethasone (Sigma-Aldrich) or 5 × 10⁵ immortalized hBM-MSC (TERT cells [23]) were added to cultures containing blood cells. As a negative control, equivalent numbers of the Multiple Myeloma (MM) cell line (ATCC® T27–2975™) or the Jurkat T cell line (ATCC® TIB-152™) were added. To test the potency of different MSC on monocytes from different donors, 4 × 10⁵ MSC preparations from different donors and at different passage number were simultaneously tested on different blood donors.

2.6. Cell contact-dependence of immunosuppression

To determine if MSC immunosuppression was contact dependent instead of using 96 round bottom plates we used 24 well plates with transwell inserts (Greiner bio-one ® 662 640). For these experiments, 4 × 10⁵ MSC where placed in the bottom chamber with PBMC, LPS and Brefeldin A in the top chamber. Three separate experiments were carried out using 7 different healthy blood donors and 2 MSC donors P2–P5 (n = 10). To determine if supernatants from MSC had immunosuppressive activity, 3 different MSC preparations were seeded in 6 well plates (4 × 10⁵ MSC/well) for 48 h in the presence or absence of LPS (1 ng/mL) and supernatants collected and added to the whole blood assay.

2.7. Statistical analysis

Results are expressed as average and standard deviation of percentage of TNF-α production by monocytes, using Microsoft Excel. To determine the statistical significance of the differences observed between different conditions, paired parametric t-Tests were performed, using GraphPad Prism software (version 6, San Diego, California, USA). Statistically significance differences were considered * when P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

3. Results and discussion

3.1. Optimization of monocyte activation

Monocytes within whole blood cultures were distinguished from other PBMC by a combination of CD45 and CD14 staining (Fig. 1A) and by their distinct light scatter profile (Fig. 1B). Gated monocytes were then analysed for intra-cytoplasmic TNF-α with a clear LPS dose-dependent increase in the proportion staining positively at concentrations between 0 and 5 ng/mL LPS (Fig. 1C). Monocytes were used as the target population because they are known to respond rapidly to activation by pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs respectively). The stimulus used in experiments reported here, LPS (or endotoxin), is one of the most potent pathogen-associated stimuli for monocytes and mediates its effect via binding to LPS receptor complex consisting of Toll-like receptor (TLR)-4 and its co-associated proteins CD14 and LPS binding protein (LPB). However, we have tested other activation stimuli including pam3CysSerLys4, phorbol 12-Myristate 13-Acetate, polynosinic-polycytidylic acid (PolyIC) and N-acetylmuramyl-L-alanyl-D-isoglutamine in this assay and found that all ligands were capable of inducing TNF-α expression by monocytes within 6 h of activation (data not shown).

One limitation of the assay is that individual monocyte subpopulations cannot be analysed. Currently, 3 monocyte subsets are defined, namely so-called classical (CD14+CD16−) non-classical (CD14+CD16+) and intermediate (CD14−CD16++) monocytes [4,14,17]. However, upon in vitro culture and particularly after LPS activation, CD16 expression is down regulated (not shown), rendering it impossible to identify non-classical and intermediate subpopulations.

TNF-α was chosen for the readout because the kinetics of production following activation is extremely rapid [24]. In addition, TNF-α is an important cytokine that is involved in the regulation of a wide spectrum of biological processes and regulates the immune response by activating cell proliferation, receptor expression, and migration. In addition, TNF-α has been shown to regulate the production of other cytokines [4]. In the context of the therapeutic use of MSC, important immunosuppressive activities of MSC are mediated via the TNFα/TNFαR [17–20]. This emphasizes the potential of MSC to modulate inflammatory lesions such as GvHD and inflammatory bowel diseases.

In order to optimize the assay, variations of multiple parameters were investigated to determine optimal efficiency and sensitivity. To optimize intra-cytoplasmic accumulation of TNF-α protein, Brefeldin A was added to cultures. Brefeldin-A inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus. Results indicated that concentrations from 0.6 to 3.0 μg/mL did not significantly alter the proportion of monocyte expressing TNF-α and their staining intensity was indistinguishable (data not shown). Therefore, 0.6 μg/mL was used for all subsequent experiments. It should be noted that monocyte viability, determined by Propidium Iodide exclusion, was not compromised during the assay.

Next, blood was collected in three different anti-coagulants, namely sodium heparin, K₂-EDTA and sodium citrate, diluted 5X in RPMI and the 5X TNF-α monocytes quantified following 6 h stimulation with 1 ng/mL LPS (Supplementary Fig. S1 see in the online Version at DOI: 10.1016/j.jmllet.2016.07.010). As shown, there was a strikingly lower expression of TNF-α detected when blood was collected in EDTA. Because EDTA is a divalent cation chelator binding Ca²⁺, Mg²⁺ and Zn²⁺ we wished to determine whether Ca²⁺
Fig. 1. Gating strategy used to identify monocytes and their intracytoplasmic TNF-α expression. Panel A shows the gating strategy used to identify monocytes by CD14+ and CD45+ expression (black dots), and panel B shows the FSC and SSC characteristics of CD14+CD45+ gated monocytes (black dots) amongst total cells (grey dots). Panel C shows histograms of a titration of LPS dose versus intracytoplasmic TNF-α staining. The figure is a representative result of heparinized blood diluted 10X and stimulated with the indicated doses of LPS for 6 h.

was involved in LPS-mediated monocyte activation and therefore used the Ca^{2+}-specific chelator EGTA as anticoagulant. As shown in Supplementary Fig. S2 (see in the online Version at DOI: 10.1016/j.imlet.2016.07.010), where heparinised whole blood diluted 2X in RPMI was activated with 1 ng/mL LPS, cytoplasmic TNF-α was readily detectable in heparin (Panel A), while there was no TNF-α staining in cells cultured in the presence of 2 mM EGTA (B). To investigate whether Ca^{2+} was involved in LPS binding to monocytes, we incubated PBMC with biotin-labelled LPS (LPSbiotin) and revealed bound LPS with Streptavidin-PE. As shown in panels C and D, EGTA did not affect the binding of LPS to monocytes. In addition, LPS did not bind to gated CD3+ T lymphocytes in the same PBMC preparation (E). Taken together, these results indicate that extracellular calcium is not involved in LPS binding but plays a critical role in monocyte activation by TLR-4 ligands. Indeed, a recent publication by Rossol et al. shows that, via a G-protein coupled calcium receptor, extracellular calcium has a role as a danger signal activating inflammasomes in monocytes and macrophages [25].

Dilution of whole blood prior to addition of LPS was found to significantly enhance the sensitivity of the assay as reflected in the proportion of monocytes staining positively for TNF-α for a given concentration of LPS (Supplementary Fig. S3 see in the online version at DOI: 10.1016/j.imlet.2016.07.010). Thus at a 5X dilution of blood in RPMI, heparin and sodium citrate but not EDTA resulted in optimal stimulation (Panel A). However, when blood was diluted 10X, optimal stimulation was achieved in all three anticoagulants (B). The most likely explanation for these results is calcium availability. Thus, the serum calcium concentration (0.85–1.05 mg/mL) will be further reduced in the presence of either citrate or EDTA anticoagulants [26]. However, EDTA is a more efficient calcium chelator [27]. Dilution of the blood in RPMI 1640, in which the calcium concentration is 100 mg/mL, will saturate the calcium chelating activity of the added anticoagulants and therefore at a 5X dilution monocyte activation is achieved in citrate but not in EDTA. At a 10X dilution, the chelating capacity of available EDTA is also compromised and the free calcium concentration becomes sufficient to activate monocytes.

Thus, one of the most critical parameters that we identified during the optimization phase of assay development was the type of anti-coagulant in which blood was collected. As has been previously reported, the selection of anti-coagulant may significantly impact the accuracy of whole blood-based diagnostic tests for hemolytic disease since different anti-coagulants have varying effects on blood cells for immunophenotyping, morphology or other parameters [28]. Indeed, in a recent publication by Duffy et al. [29] where multiple stimuli were used in a human whole blood assay to standardize stimulation systems and define boundaries of a healthy human immune response, the three anticoagulants used herein were also tested. Duffy and colleagues also found that activation by a multiplicity of stimuli, including bacterial, viral, cytokine, TCR and microbial–associated molecular patterns (MAMP) were optimally achieved when blood was collected in heparinized tubes. However, these authors made no further comments on this finding.

Based on the combined results to this point and on the previously unappreciated calcium dependency of LPS-stimulated TNF-α production, heparin was used preferentially for anticoagulation, the LPS concentration was fixed at 1 ng/mL and whole blood diluted 10 fold in RPMI. The optimum time for LPS stimulation was determined to be 4–6 h (Supplementary Fig. S4 see in the online version at DOI: 10.1016/j.imlet.2016.07.010). Note that after 8–24 h, some degree of spontaneous TNF-α expression was seen. Blood could be collected in heparin and stored at ambient temperature for 3 days and used successfully in the assay (Supplementary Fig. S5 see in the online version at DOI: 10.1016/j.imlet.2016.07.010). As an alternative to TNF-α expression, IL-12 (Supplementary Fig. S6 see in the online version at DOI: 10.1016/j.imlet.2016.07.010), MCP-1 and IL-10 (not shown) were assayed. As confirmed by intracytoplasmic staining (data not shown), production of IL-12 by activated monocytes was delayed compared with TNF-α. In addition, there was considerable variability in the proportion of
IL-12-expressing cells (Supplementary Fig. S6 see in the online version at DOI: 10.1016/j.imlet.2016.07.010). Therefore, to shorten the duration of the assay and to maintain reliability, TNF-α production only was monitored. Regarding to MCP-1 and IL-10, it was not possible to have reproducible MCP-1 and detectable IL-10 expression using intra-cytoplasmic expression and flow cytometry (not shown).

3.2. T cell stimulation assay

In parallel with studies investigating the quantitative inhibition of monocyte activation by MSC, studies were also carried out on T cells. To measure the inhibitory activity of MSC on T cells, CFSE-labelled activated T cells are normally used as indicator cells with added MSC inhibiting this proliferation. Results from this assay are rarely quantitated. In addition, this assay is very time-consuming and we wished to develop an assay with a rapid turnaround. Therefore, we investigated TNF-α and IFN-γ expression and acquisition of early (CD69) and later (CD25) activation markers by freshly-activated T cells. Three activation protocols were used, namely i) PMA (5 ng/ml) plus ionomycin (0.5 μg/ml), ii) PHA (10 μg/ml) or iii) anti-CD3 + anti-CD28 beads. PHA activation was found to be inferior to the other protocols and was not used further. Preliminary experiments demonstrated that after 24 h of stimulation by PMA plus ionomycin, addition of Brefeldin-A prevented up-regulation of CD69 and CD25 after 24 h by CD8⁺ T cells (Supplementary Fig. S7 see in the online version at DOI: 10.1016/j.imlet.2016.07.010); similar results were also seen with CD4⁺ T cells. Therefore, in order to develop an assay investigating cytokine expression by both monocytes and T cells for which Brefeldin-A is necessary, expression of CD69 and CD25 was not pursued further.

Preliminary experiments with the anti-CD3 and anti-CD28 bead activation kit revealed that despite testing at several bead:T cell ratios, T cells could not be activated in whole blood cultures. However, the kit could be used to activate T cells in peripheral blood mononuclear cell preparations following ficoll density gradient centrifugation. With such cell preparations, it was possible to observe an increase in TNF-α expression by T cells in a time and dose dependent manner. Thus, at a bead:T cell ratio of 10:1, the relatively low TNF-α expression among CD8⁺ T cells peaked at 6 h (Supplementary Fig. S8 see in the online version at DOI: 10.1016/j.imlet.2016.07.010, panel A) and in CD4⁺ cells at 24 h (Panel B); IFN-γ expression by CD3⁺ cells was barely detectable (panel C).

Following optimization, PBMC were routinely activated for 24 h with a 1:1 bead:T cell ratio and co-cultured with graded doses of TERT cells. As shown for monocyte assays (see Fig. 2E below), the TERT MSC line consistently inhibited monocyte activation and was used as positive control. However, as shown in Supplementary Fig. S9 (see in the online version at DOI: 10.1016/j.imlet.2016.07.010), TERT cells were unable to inhibit cytokine expression by activated T cells. Similar results were obtained with fresh and cultured MSC.

In summary, despite being able to develop a rapid turnaround assay for the inhibition of monocyte activation by MSC, develop-
ment of a similar assay for the inhibition of T cell activation was unsuccessful.

3.3. Immunosuppressive assay

Having optimised the various parameters for the assay, experiments were conducted to see whether MSC would inhibit monocyte activation. Human BM-MSC preparations were characterized for expression of CD73, CD90, CD105 and CD44 and for the lack of expression of CD19, CD34, CD45 and HLA-DR on gated viable cells (Supplementary Fig. S10 see in the online version at DOI: 10.1016/j.imlet.2016.07.010). Addition of graded numbers of hBM-MSC resulted in a dose-dependent reduction in monocyte%TNF-α expression (Fig. 2A). As can be seen, on addition of MSC up until about 10^5 cells per well, there is an approximately 2.5-fold (157,000 to ∼60,000) decrease in the mean fluorescence intensity (MFI) of TNF-α expression with a slight reduction in% TNF-α positive cells. Then on addition of 2.5–5 × 10^5 MSC, the% TNF-α positive cells decreases, as does the MFI of TNF-α expression by an additional 2-fold (∼60,000 to ∼30,000). Titration experiments from 5 different blood donors and three MSC preparations plotted as% TNF-α positive cells (Fig. 2B) indicated that measurable inhibition of monocyte TNF-α production occurred when between 2.5 and 5 × 10^4 MSC were added per sample and increased progressively with higher cell numbers. In contrast, addition of equivalent numbers of the human Multiple Myeloma (MM) or Jurkat T cell lines as negative controls did not result in inhibition of monocyte TNF-α production (Fig. 2C). As expected, MSC had a mean FSC (a parameter related to cell size) value 2.06 times (7.24/3.52) that of MM cells (Supplementary Fig. S11 see in the online version at DOI: 10.1016/j.imlet.2016.07.010). In titration experiments, (Fig. 2B and C), 5 × 10^5 MM cells did not inhibit monocyte activation already seen using 10-fold fewer, namely 5 × 10^4 MSC making it unlikely that cell size alone was responsible for inhibition. This is a short-term (6 h) assay in 1 ml cultures in round-bottom plates; metabolic arguments are unlikely to be an explanation for the inhibitory effects of MSC on monocyte activation. As a positive control for inhibition, dexamethasone was used. As shown (Fig. 2D), a dose-dependent reduction of monocyte%TNF-α expression was observed and was maximal at 10 ng/ml dexamethasone – a concentration that was subsequently used in all experiments involving hBM-MSC. As an additional positive control, the hBM-MSC line TERT was used. As shown (Fig. 2E), addition of 5 × 10^5 TERT cells to the whole blood culture inhibited monocyte activation. Since TERT cells were routinely available, they were used as cellular positive control in all assays.

Monocytes that had been pre-activated by LPS for 1 h prior to MSC addition were also susceptible to inhibition of TNF-α production (data not shown). Control experiments where monocytes and allogeneic hBM-MSC were co-cultured in the absence of LPS stimulation did not result in any TNF-α expression by monocytes (Fig. 2F). Taken together, this indicates that monocyte inhibition is MSC-specific, there is no activation of monocytes by MSC alone and that LPS stimulation is necessary for monocyte activation.

A series of experiments was subsequently performed in which the monocyte TNF-α inhibition assay was used to compare simultaneously the potency of different MSC preparations on monocytes from different blood donors. Results for MSC from three different BM donors at three different passage numbers assayed on blood samples from two individual volunteers are shown in Fig. 3A and B. Results indicated comparable suppressive potency of all three MSC cultures with variability across passage number for two of the three cultures. Of note, the suppression patterns observed for the three MSC cultures and their different passage numbers were very similar for both blood donor samples assayed. When suppressive potencies for the passage MSC cultures from the three different BM donors were averaged from assay results for four separate blood samples, a greater inhibition of monocyte%TNF-α was seen for one (MSC A) compared to the other two (MSC B and C). Consistent with previous reports [30], we observed some variations in MSC potency (Fig. 3).
Ongoing clinical trials in which the potency assay is being used will attempt to correlate in vitro results with clinical outcome.

3.4. Mechanism of action of MSC

Given that MSC inhibited monocyte activation in a dose-dependent manner, we wished to investigate their mechanism of action. One possibility was that MSC in the whole blood culture would remove sufficient LPS so that monocyte activation would not occur. Therefore, we used biotinylated LPS to stain PBMC and MSC as well as cells in the whole blood assay. The biotinylated LPS used was as biologically active as the unlabelled material (not shown). As shown in Fig. 4A, LPS bound to monocytes in PBMC preparations (solid line) and addition of MSC reduced staining slightly (dotted line). As shown in Fig. 4B, LPS did not bind to MSC (solid line) even in the presence of PBMC (dotted line). T cells in the same PBMC preparation did not bind LPS (Supplementary Fig. 2E see in the online version at DOI: 10.1016/j.imlet.2016.07.010). Thus, sequestration of LPS by added MSC was not the cause of reduced monocyte activation.

Release of soluble immune-regulatory factors by MSC such as indoleamine 2, 3-dioxygenase (IDO), hepatic growth factor (HGF), transforming growth factor-β (TGF-β), interleukin (IL)-10, prostaglandin E2 (PGE2) and human leukocyte antigen (HLA) have been implicated in their ability to inhibit of T cell proliferation [31,32]. However, how MSC inhibit monocyte activation is currently unknown. In these experiments, transwell cultures are frequently used in which cells are cultured in flat-bottom wells of plates with porous filter inserts. In carrying out these experiments, we noted that despite MSC being capable of inhibiting monocyte activation in round bottom wells of microtiter plates (Fig. 5, left four histograms), no such inhibition was seen when similar cell densities were cultured in flat-bottom plates (right two histograms). Control experiments where monocytes and allogeneic hBM-MSC were co-cultured in the absence of LPS stimulation did not result in any TNF-α expression by monocytes. Culture well geometry is known to affect cellular interactions, as for example in mixed lymphocyte cultures [33] and these results would indicate a similar phenomenon for the inhibition of monocyte activation by MSC. Based on these results, we conclude that cell contact is most likely necessary for the mediation of the immunosuppressive activity on monocyte activation. Further investigation of the mechanism of MSC action on monocytes using transwell cultures were deemed inappropriate.

![Image](https://via.placeholder.com/150)

Fig. 4. Biotinylated LPS binds to monocytes but not to MSC. Panel A shows LPS_{biotin} binding to monocytes in PBMC revealed with streptavidin-PE (solid line), whereas when co-cultured with MSC, LPS_{biotin} binding is slightly reduced (dotted line). The shaded histogram shows control streptavidin-PE staining. Panel B shows that LPS_{biotin} does not bind to MSC alone (solid line), even in the presence of PBMC (dotted line). For these experiments, monocytes and MSC at a ratio of 1:30 were activated with 1 μg/mL LPS_{biotin} for 1 h at 37°C.

![Image](https://via.placeholder.com/150)

Fig. 5. Cell contact is necessary for monocyte inhibition by MSC. Differences between performing the whole blood assay in a 96 well round bottom plate (left four histograms) or a 24 well flat bottom plate (right two histograms). Results are expressed as %± mean TNF-α expression in monocytes from 7 blood donors (P<0.05) with the presence of 2 MSC donors (P<0.01). Heparinized blood was diluted 10X and activated for 6h with 1 ng/mL LPS. Similar numbers of cells were cultured in each format. Monocytes were cultured alone (control), stimulated with LPS (LPS), with MSC alone (MSC) or with LPS + MSC. All statistical differences were compared with the LPS alone group for each plate. Unpaired multiple t-tests, ****P<0.0001.

4. Conclusion

Using one of the best-described immune-modulatory activities of MSC, we were able to develop a simple, rapid whole blood quantitative flow cytometry based assay with which to measure their potency. The process of developing the assay conditions also highlighted the importance of considering a range of key technical variables and carefully optimizing each of these. Currently, MSC preparations are being supplied commercially for infusion into patients for a variety of diseases. However, to our knowledge, the only other MSC potency assay so far described measures cytokine release by activated blood cells [8]. This is a more time-consuming and expensive assay than the one described herein. Thus, the whole assay from blood collection to obtaining results, takes only 8–9 h. The rapidity of this assay therefore has the potential of providing on the same day confirmatory information regarding the poten-
tial immunosuppressive potential of a specific batch of MSCs. Such an assay could be used to screen the recipients’ blood cells for inhibition by the MSC preparation that will be injected, thereby contributing to personalized medicine. Finally, correlations need to be sought between results obtained in vitro with clinical outcome in vivo. Such clinical trials are currently being initiated.

Competing interests

The authors declare they have no competing financial interests. This assay is patented under PCT international application number 14/787,367.

Authors’ contributions

AR was responsible for all the experimental work, analysis and data interpretation, as well as manuscript drafting, TR, MC and RC obtained funding and contributed to the study design and coordination. All authors read and approved the final manuscript.

Acknowledgements

This work was funded by Science Foundation Ireland and developed under Technology Innovation Development (TIDA) Feasibility study (11/TIDA/B2033). We gratefully acknowledge Dr Shirley Hanley for the operation of the NUIG flow cytometry core facility where this work was carried out.

We would like to gratefully thank Dr. Stephen Elliman from Orbsen Therapeutics (Galway) and Georgina Shaw from the Regenerative Medicine Institute (NUIG) for providing the human Bone Marrow Mesenchymal Stromal Cells.

We also would like to thank Dr. Alessandro Natoni from National Centre for Biomedical Engineering Science (NUIG), for providing the Multiple Myeloma and Jurkat cell lines, and Professor Tim O’Brien for providing the TERT cells.

References

Andrea Ribeiro is a research scientist finishing her PhD at the National University of Ireland, Galway in the FP7-funded Marie Skłodowska Curie Initial Training Network DECIDE consortium. From 2010, she was working as a research assistant in flow cytometry and immunology groups in both Portugal and Ireland. In 2012 she joined the Regenerative Medicine Institute (REMEDi) in order to develop a flow cytometry-based whole blood assay to measure the immunosuppressive potency of Mesenchymal Stromal Cells.
Thomas Ritter is a leading researcher in the field of transplant immunology applied to corneal and other tissue transplants and stem cell therapies. He developed his expertise at Charité University in Berlin, Germany and the Centre d’Immunologie de Marseille-Luminy, France before joining the National University of Ireland, Galway faculty in 2005. His laboratory has established pre-clinical models for gene and cell therapy in corneal transplantation and other ocular diseases and developed a range of techniques for characterizing local and systemic immune responses in these models. He has obtained substantial funding from several agencies totaling over €5M.

Matthew Griffin is a physician scientist with over 15 years of experience in basic immunology, clinical research and clinical practice applied to transplantation and stem cell therapy. He has been a principal investigator in the Regenerative Medicine Institute (REMEDI) and professor in the School of Medicine at the National University of Ireland, Galway since 2008. Prior to that, he trained and worked at The University of Chicago and at the Mayo Clinic Transplant Center in the US. His research interests include, cellular immunology, stem cell biology and pre-clinical and clinical investigations of kidney disease, transplantation and regenerative medicine.

Rhodri Ceredig is a research scientist with over 35 year of experience in mouse lymphocyte development. In 2008, he joined the Regenerative Medicine Institute (REMEDI) as Professor of Immunology and in collaboration with Prof Noel Lowndes has been investigating the role of hypoxia in the DNA damage response of mesenchymal stromal cells. From the early ’80s he was involved in using flow cytometry as an experimental tool in immunology and is currently the academic in charge of the flow cytometry core facility at the National University of Ireland Galway.