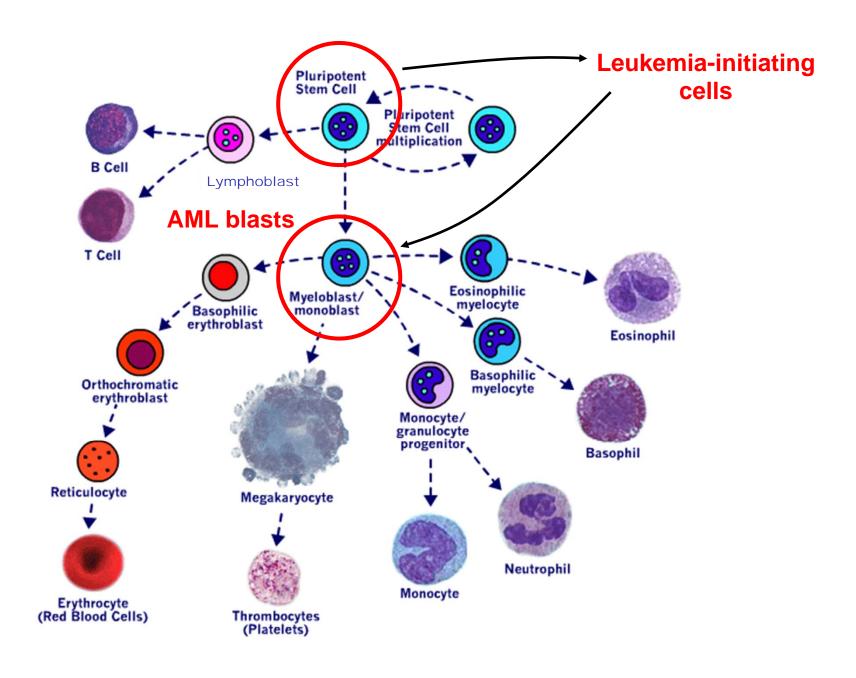
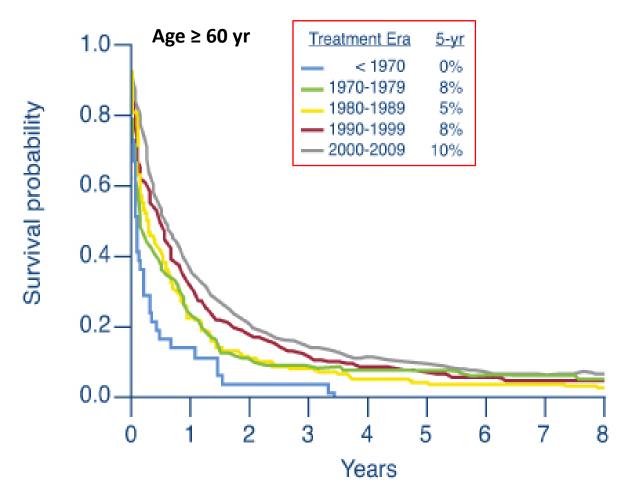
## Small-Molecule Enhancers of the Antileukemic Activity of Vitamin D Derivatives (VDDs) in AML Models


#### Michael Danilenko

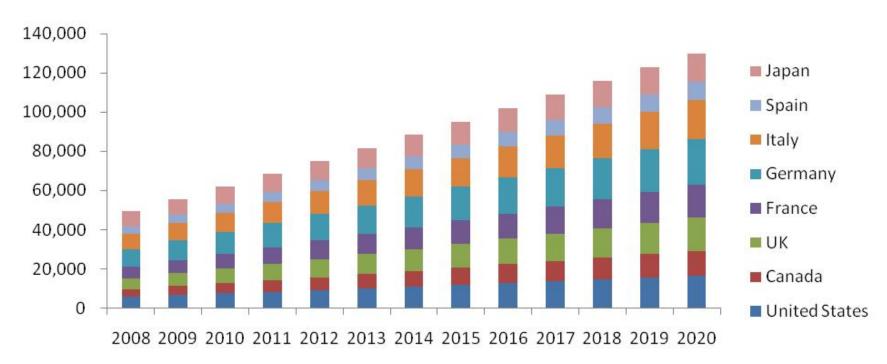
Clinical Biochemistry & Pharmacology Ben-Gurion University of the Negev, Beer Sheva, Israel






#### **Acute Myeloid Leukemia (AML)**




#### Acute Myeloid Leukemia: Incidence & Survival



Limited progress in treatment of older patients with AML (MD Anderson Cancer Center Database)

Novel therapeutic strategies are needed

#### Acute Myeloid Leukemia diagnosed population in developed countries (2008 - 2020)



**Source:** Markets And Markets analysis

**AML** prevention becomes an issue

# Chemotherapy Cell death (apoptosis) Differentiation therapy Cell maturation

**Cytarabine + Anthracycline "7+3"** 

- 50-70% CR → inevitable recurrence
- Toxicity, esp. in older patients

AML-M3 (APL):
All trans-retinoic acid (ATRA)
+ Chemo or As<sub>2</sub>O<sub>3</sub>
~95% CR - 80% DFS

## $1\alpha,25$ -dihydroxyvitamin $D_3$ (1,25D) as an anticancer agent

- Powerful inducer of differentiation, growth arrest and/or apoptosis in cancer models in vitro & in vivo
- Causes severe hypercalcemia at pharmacologically effective doses in vivo
- Synthetic low-calcemic analogs limited progress in cancer clinical trials

#### **Combination approach:**

#### Low (tolerated) dose of 1,25D or analog + Enhancer / Sensitizer

#### Initial findings showing cooperation of 1,25D and other compounds:

- Miyaura C, Abe E, Honma Y, Hozumi M, Nishii Y, Suda T.
   Cooperative effect of 1α,25-dihydroxyvitamin D<sub>3</sub> and dexamethasone in inducing differentiation of mouse myeloid leukemia cells. Arch Biochem Biophys, 1983, 227: 379-385.
- 2. Olsson I, Gullberg U, Ivhed I, Nilsson K. **Induction of differentiation of the human histiocytic lymphoma cell line U-937 by 1α,25-dihydroxycholecalciferol**. *Cancer Res*, **1983**, 43: 5862-5867.

#### Differentiation-inducing agents cooperating with VDDs

| Compound                                        | Cell type                                                                                       | Comments                                                                                                      |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Retinoids: ATRA 9-cis-RA Synthetic retinoids    | Hematopoietic, Prostate,<br>Breast, Pancreas, Ovary,<br>Neuroblastoma, Lung, Colon,<br>Melanoma | Synergistic, additive or antagonistic effects depending on cell type. Role of androgen receptor is suggested. |
| PKC activators: TPA Bryostatin                  | Hematopoietic<br>Breast                                                                         | Involvement of NFkB nuclear targets and enhanced VDR expression is suggested.                                 |
| HDAC inhibitors: Sodium butyrate Trichostatin A | Hematopoietic, Colon, Prostate<br>Breast, Prostate                                              | Cooperation is associated with upregulation of VDR.                                                           |
| TGF-β                                           | Hematopoietic, Breast, Colon<br>Bone, Multiple myeloma                                          | Cooperation involves upregulation of TGF-β receptors and VDR.                                                 |
| GM-CSF                                          | Hematopoietic                                                                                   | Synergistic differentiating effect is associated with induction of c-fos and downregulation of c-myc.         |
| Dimethyl sulfoxide                              | Hematopoietic                                                                                   | DMSO-induced G1 arrest is required for synergy                                                                |

#### Various drugs and other agents cooperating with VDDs

| Compound                                                                                                                                                                                                                                               | Cell type                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dexamethasone                                                                                                                                                                                                                                          | Hematopoietic, Myeloma,<br>Breast, Ovary, Squamous cell<br>carcinoma | Dexamethasone reduces hypercalcemia induced by 1,25D <sub>3</sub> . The enhancing effect is attributed to VDR upregulation and reduction in ERK and Akt activities.                                                                                                                                                                                                                                                  |
| Cytochrome P450 inhibitors: Ketoconazole Liarozole VID400                                                                                                                                                                                              | Hematopoietic, Prostate,<br>Breast<br>Ovary                          | Enhancement is cell type-dependent. The mechanism of potentiation appears to be due to inhibition of 24-hydroxylase activity, which results in the reduced vitamin D <sub>3</sub> metabolism.                                                                                                                                                                                                                        |
| NSAIDs                                                                                                                                                                                                                                                 | Hematopoietic                                                        | The potentiating effect is mediated by inhibition of aldoketoreductase (AKR1C3).                                                                                                                                                                                                                                                                                                                                     |
| $\frac{\text{Cytokines}}{\text{TNF}\alpha}:$ $\text{IL-1}\beta, \text{IL-4}, \text{IL-6}$ $\text{Interferon}$                                                                                                                                          | Hematopoietic, Breast, Kidney                                        | Involvement of ROS is suggested. Enhance ICAM-1-dependent adhesion. Confer monocytic phenotype.                                                                                                                                                                                                                                                                                                                      |
| Chemotherapeutic agents:  Anti-microtubule drugs  Docetaxel (Taxotere)  Paclitaxel (Taxol)  Topoisomerase inhibitors  Camptothecin  Doxorubicin  Etoposide  Platinum drugs  Cisplatin  Carboplatin  Nucleoside analogs  1-β-D-arabinofuranosylcytosine | Prostate cancer, Breast, Bone, Prostate, Squamous cell carcinoma     | Pretreatment with deltanoids lowers the threshold for chemotherapy agents. Enhanced growth arrest and CD14 expression. p53 and ROS are involved in cooperation.  Sequence of treatments is critical to the effect. Restore 1,25D <sub>3</sub> effect by DNA demethylation. Myeloid and monocytoid cells have different sensitivities to pyrimidine nucleoside analogs. Combinations enhance VDR/RXR binding to VDRE. |
| 5-aza-2'-deoxycytidine                                                                                                                                                                                                                                 | D                                                                    | anilenko & Studzinski (2004) Exp Cell R                                                                                                                                                                                                                                                                                                                                                                              |

## Phytochemicals and protein kinase inhibitors as functional enhancers of VDDs' effects

Plant polyphenols:

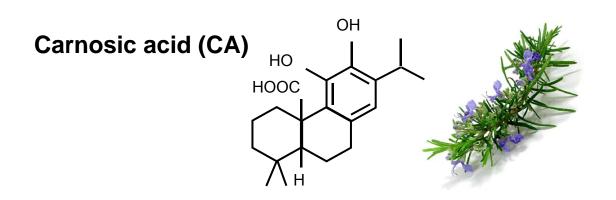
Carnosic acid, Curcumin, Silibinin

Kinase inhibitors:

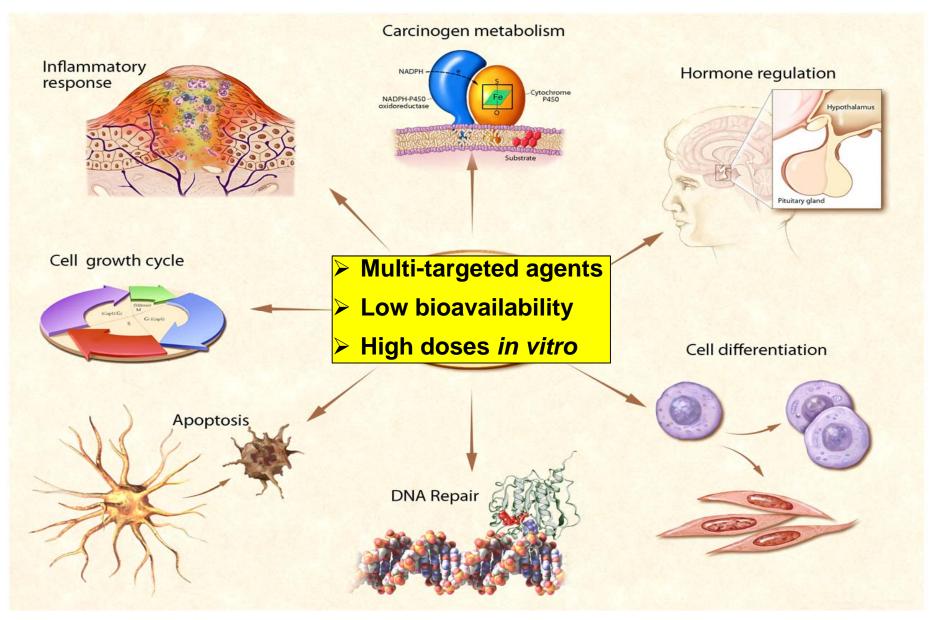
p38, Cot1 and ERK5 kinases

Danilenko et al. (2001) JNCI

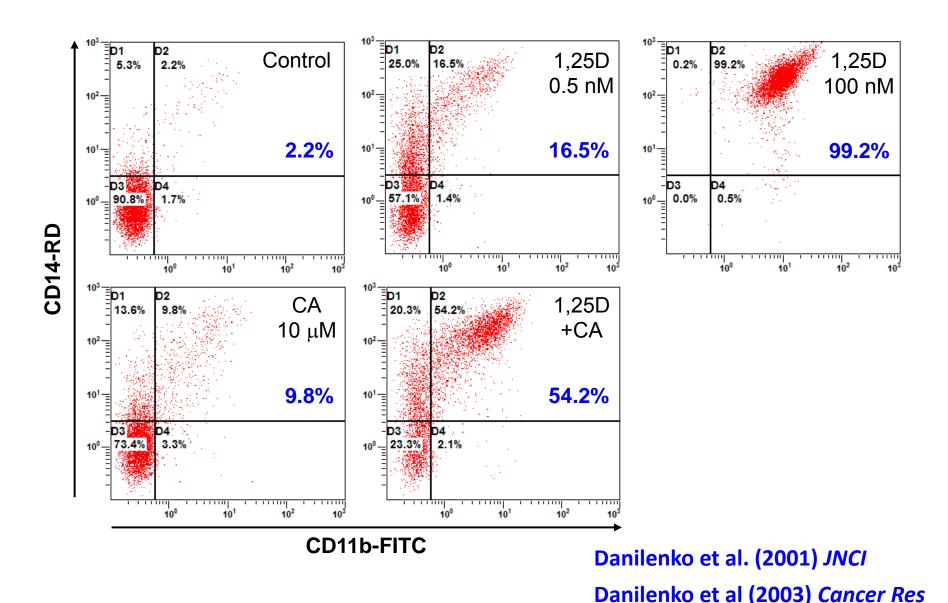
Danilenko et al (2003) Cancer Res Zhang et al. (2007) J Steroid Biochem Mol Biol


Wang et al. (2005) J Cell Physiol Wang et al. (2010) Cell Cycle

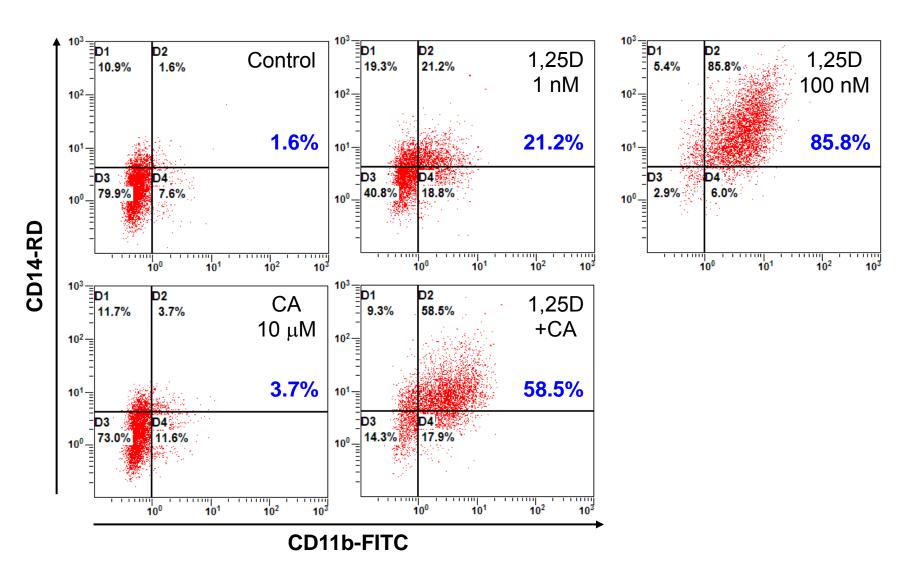
Shabtay et al (2008) Oncology Wang et al. (2014) J Steroid Biochem Mol Biol


Bobilev et al. (2011) Cancer Biol Ther Wang et al. (2014) J Cell Physiol

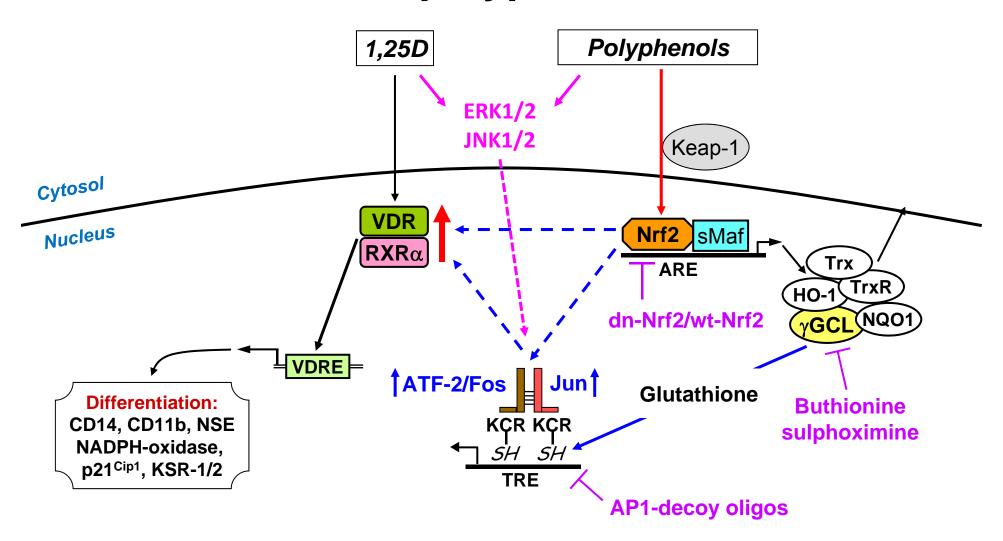
Wassermann et al. (2012) Leuk Res Treatment Wang et al. Exp Cell Res (in revision)


#### Plant polyphenols – potential anticancer agents




## Mechanisms Involved in the multi-targeted anticancer effects of phytochemicals

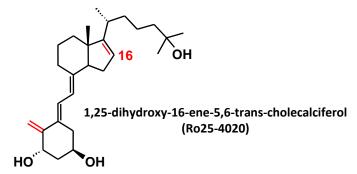



## Synergistic induction of differentiation by 1,25D and carnosic acid in HL60-G cells (96 h)



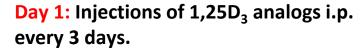
## Synergistic induction of differentiation by 1,25D and carnosic acid in U937 cells (96 h)




## Putative mode of synergy between 1,25D and polyphenols



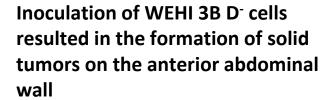
Bobilev et al. (2011) *Cancer Biol Ther*Wassermann et al. (2012) *Leuk Res Treatment* 


Danilenko et al. (2003) *Cancer Res*Wang et al. (2005) *J Cell Physiol* 

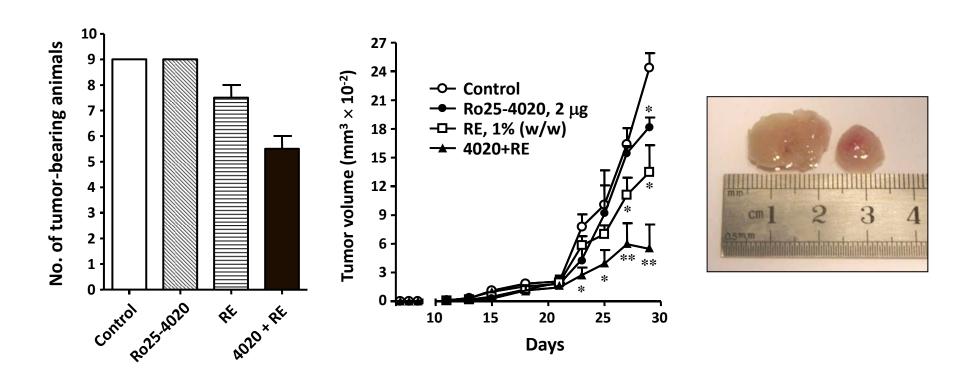
#### **Syngeneic Tumor Model of AML**



#### Healthy Balb/c mice


Day 0: Inoculation i.p. with 1.0 × 10<sup>5</sup> WEHI-3B D<sup>-</sup> cells



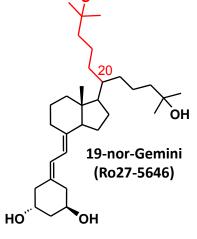

Oral treatment with a dried ethanolic rosemary extract (~35% CA) mixed with a powdered food







## Cooperative Antileukemic Effects of Ro25-4020 and Rosemary Extract in the AML Tumor Model

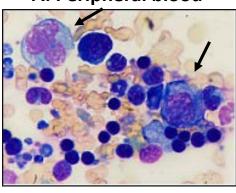



Syngeneic Model of Systemic AML

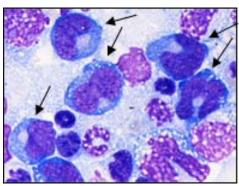
#### Healthy Balb/c mice



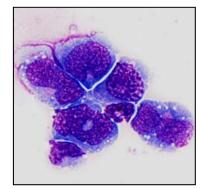
Day 0: Inoculation i.v. with  $2.0 \times 10^6$  WEHI 3B D<sup>-</sup> cells



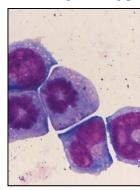

Day 7: Injections of Ro27-5646 i.p. every 3 days.


Oral treatment with a dried ethanolic rosemary extract mixed with a powdered food

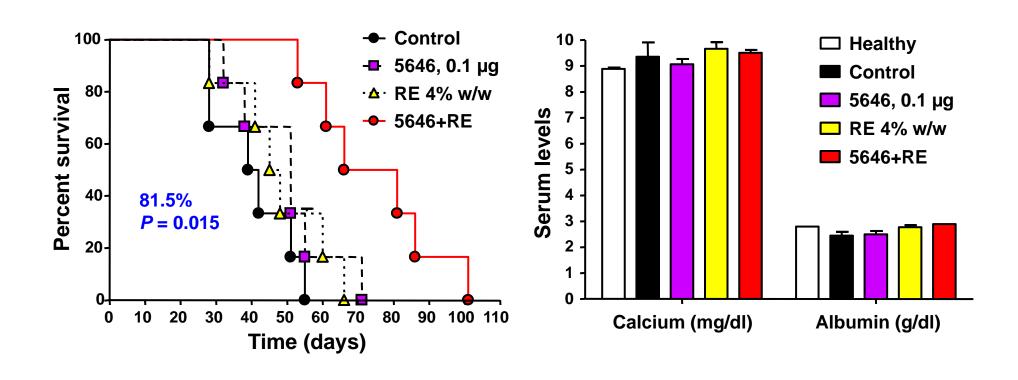
Day 21: Leukemia development


A. Peripheral blood



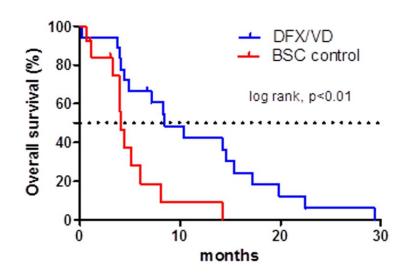

**B.** Bone marrow



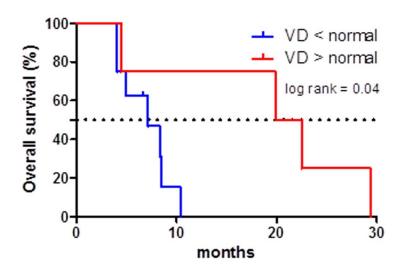

C. Blast cluster in BM



D. WEHI-3B D<sup>-</sup> cells




## Synergistic antileukemic effects of rosemary extract (RE) and Ro27-5646 in a syngeneic mouse model of AML




## 25(OH)D<sub>3</sub> – Deferasirox combination increases overall survival in elderly AML patients

**BSC**, best supportive care - 13 patients ( $\sim$  76 yo) **DFX**, deferasirox (1-2 g/d) + **VD**, 25(OH)D<sub>3</sub> (100,000 IU/week) – 17 patients ( $\sim$  71 yo)



Median survival: **10.4 months vs. 4 months** 

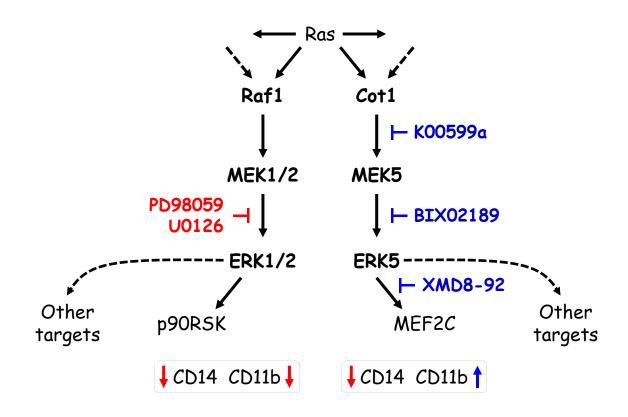


Only serum levels of 25(OH)D<sub>3</sub> prior to treatment was able to predict patients' outcome:

21.2 vs. 7.1 months

Cancer 2014;120:521-9.

Original Article


## Low 25(OH) Vitamin D<sub>3</sub> Levels Are Associated With Adverse Outcome in Newly Diagnosed, Intensively Treated Adult Acute Myeloid Leukemia

Hun Ju Lee, MD<sup>1</sup>; Josephia R. Muindi, MD, PhD<sup>2</sup>; Wei Tan, MA<sup>3</sup>; Qiang Hu, PhD<sup>3</sup>; Dan Wang, MA<sup>3</sup>; Song Liu, PhD<sup>3</sup>; Gregory E. Wilding, PhD<sup>3</sup>; Laurie A. Ford, BS<sup>1</sup>; Sheila N. J. Sait, PhD<sup>4</sup>; Annemarie W. Block, PhD<sup>4</sup>; Araba A. Adjei, PhD<sup>2</sup>; Maurice Barcos, MD, PhD<sup>5</sup>; Elizabeth A. Griffiths, MD<sup>1</sup>; James E Thompson, MD<sup>1</sup>; Eunice S. Wang, MD<sup>1</sup>; Candace S. Johnson, PhD<sup>2</sup>; Donald L. Trump, MD<sup>6</sup>; and Meir Wetzler, MD<sup>1</sup>

**BACKGROUND:** Several studies have suggested that low 25(OH) vitamin  $D_3$  levels may be prognostic in some malignancies, but no studies have evaluated their impact on treatment outcome in patients with acute myeloid leukemia (AML). **METHODS:** Vitamin D levels were evaluated in 97 consecutive, newly diagnosed, intensively treated patients with AML. MicroRNA expression profiles and single nucleotide polymorphisms (SNPs) in the 25(OH) vitamin  $D_3$  pathway genes were evaluated and correlated with 25(OH) vitamin  $D_3$  levels and treatment outcome. **RESULTS:** Thirty-four patients (35%) had normal 25(OH) vitamin  $D_3$  levels (32-100 ng/mL), 34 patients (35%) had insufficient levels (20-31.9 ng/mL), and 29 patients (30%) had deficient levels (<20 ng/mL). Insufficient/deficient 25(OH) vitamin  $D_3$  levels were associated with worse relapse-free survival (RFS) compared with normal vitamin  $D_3$  levels. In multivariate analyses, deficient 25(OH) vitamin  $D_3$ , smoking, European Leukemia Network genetic group, and white blood cell count retained their statistical significance for RFS. Several microRNAs and SNPs were associated with 25(OH) vitamin  $D_3$  levels, although none remained significant after multiple test corrections; one 25(OH) vitamin  $D_3$  receptor SNP, rs10783219, was associated with a lower complete remission rate (P = .0442) and with shorter RFS (P = .0058) and overall survival (P = .0011). **CONCLUSIONS:** It remains to be determined what role microRNA and SNP profiles play in contributing to low 25(OH) vitamin  $D_3$  level and/or outcome and whether supplementation will improve outcomes for patients with AML. *Cancer* 2014;120:521-9. © 2013 American Cancer Society.

Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263;

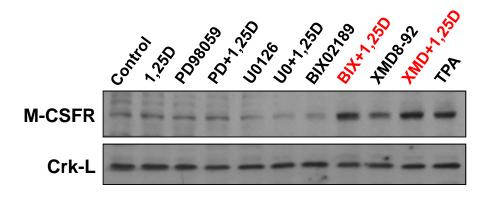
## Roles of ERK1/2 and ERK5 signaling in 1,25D<sub>3</sub>-induced differentiation of AML cells

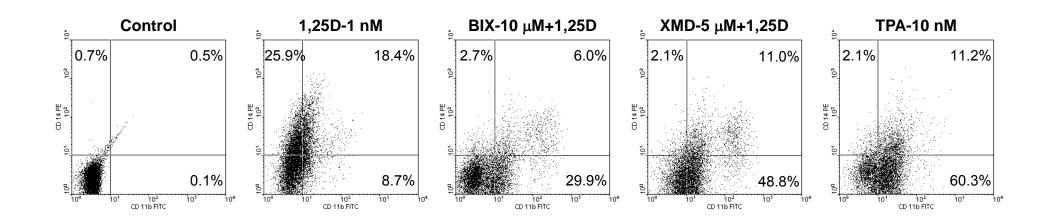


Wang et al. (2010) Cell Cycle

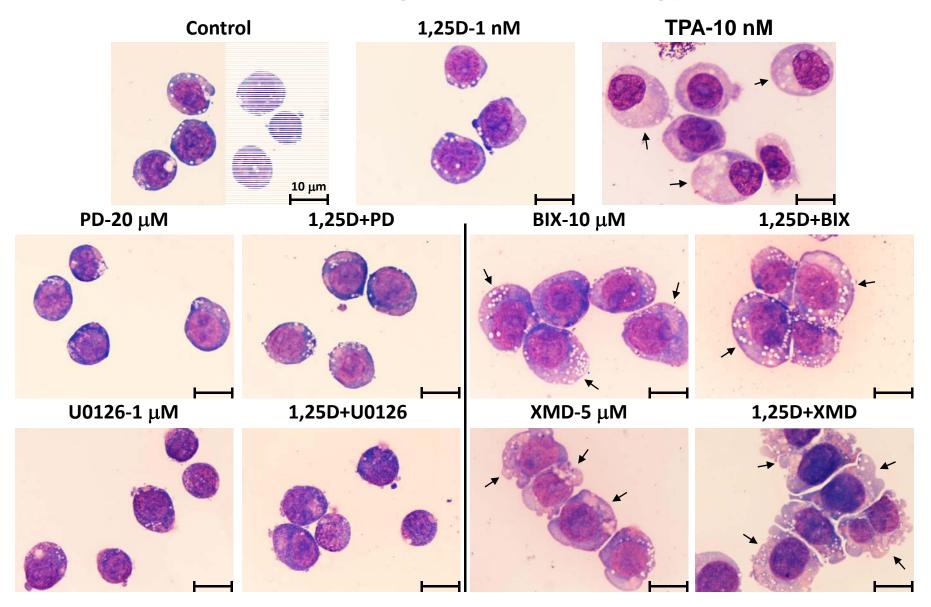
Wang et al. (2014) J Steroid Biochem Mol Biol

Wang et al. (2014) J Cell Physiol


Wang et al. (2014) Exp Cell Res (accepted)


## MEK5/ERK5 inhibition modulates CD14 and CD11b expression




Wang et al. (2014) *J Steroid Biochem Mol Biol*Wang et al. (2014) *J Cell Physiol* 

#### MEK5/ERK5 inhibition potentiates M-CSF receptor expression





#### HL60 cells treated with ERK5 inhibitors acquire macrophage-like morphology



Wang et al. (2014) Exp Cell Res (accepted)

#### **Conclusion:**

Synergistically acting combinations of VDDs and small-molecule sensitizing agents demonstrate promising antileukemic activity, which is mediated by distinct molecular mechanisms.

#### Acknowledgements

BGU & Soroka University Medical Center (Beer Sheva, Israel)

Victoria Novik

**Zeev Barvish** 

**Ehud Sharony** 

**Marina Khanin** 

**Doron Amichay** 

**Meray Lahay-Cohen** 

Irene Zuili

**Yoav Sharoni** 

Joseph Levy

Rutgers-New Jersey Medical School (Newark, NJ)

George P Studzinski
Xuening Wang

#### **Funding**



