Good and poor cognitive performers differ at nutrient intake level

Introduction

- Ageing is a critical issue worldwide. In Portugal, estimates of 2016 indicated that 2.1 million people were aged 65 years old or older, accounting for 20% of the population.
- Normal ageing is associated not only with global cognitive function decline but also with impaired cognitive flexibility, processing speed and short-term memory.
- Nutritional status, food patterns, food groups and intake of certain nutrients influence the global cognitive function. Thus, overall the literature suggests that adherence to a healthy dietary pattern is associated with less cognitive decline and/or a lower risk of dementia. However, findings are inconsistent and more research is warranted to determine the mechanisms.
- Hence, we explored the cross-sectional relationship between good and poor cognitive performance and dietary intake in older community dwellers.
- The following date are preliminary results obtained from a cross-sectional analysis.

Methods

- A representative sample of the Portuguese older population (n=1051) with respect to age, gender and education, from Guimarães and Vizela, underwent a battery of neurocognitive tests. After a principal component analysis of a subsample have identified four significant dimensions of the cognitive function, four clusters have arisen: "very good", "good", "poor" and "very poor" cognitive performers. Of those, 60 participants of the "very good" and 60 particpants of the "very poor" clusters are being followed-up since 2012. In the present poster "very good" and "very poor" performers will be referred as good and poor performers, respectively.
- In the first wave of assessment (2012), data on dietary intake was collected via 24-hour dietary recall (n=105) by an experienced dietitian.
- Nutrients intakes were determined by Nutrilog SAS software (version 2.3).
- After testing the assumptions independent t-tests and Mann-Whitney test were run between poor and good performance groups to determine whether there were statistical differences.

References

- INE. Portal do Instituto Nacional de Estatística [cited 2017 Apr 18]. Available from: URL: https://www.ine.pt/xportal/ xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=277695619&DESTAQUESmodo=2.
- Costa PS, Santos NC, Cunha P, Palha JA, Sousa N. The use of bayesian latent class cluster models to classify patterns of cognitive performance in healthy ageing. PLoS One 2013; 8(8):e71940.
- Aging IoMCotPHDoC. Cognitive aging: Progress in understanding and opportunities for action; 2015.
- van de Rest O, Am Berendsen A, Haveman-Nies A, Groot LC de. Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr 2015; 6(2):154-68.
- Marques PCG, Soares JMM, Magalhaes RJdS, Santos NC, Sousa NJC. Macro- and micro-structural white matter differences correlate with cognitive performance in healthy aging. Brain Imaging Behav 2016; 10(1):168-81.
- Santos NC, Moreira PS, Castanho TC, Sousa N, Costa PS. Discriminant power of socio-demographic characteristics and mood in distinguishing cognitive performance clusters in older individuals: a cross-sectional analysis. Aging Ment Health 2016:1–6.

Beneficiaries

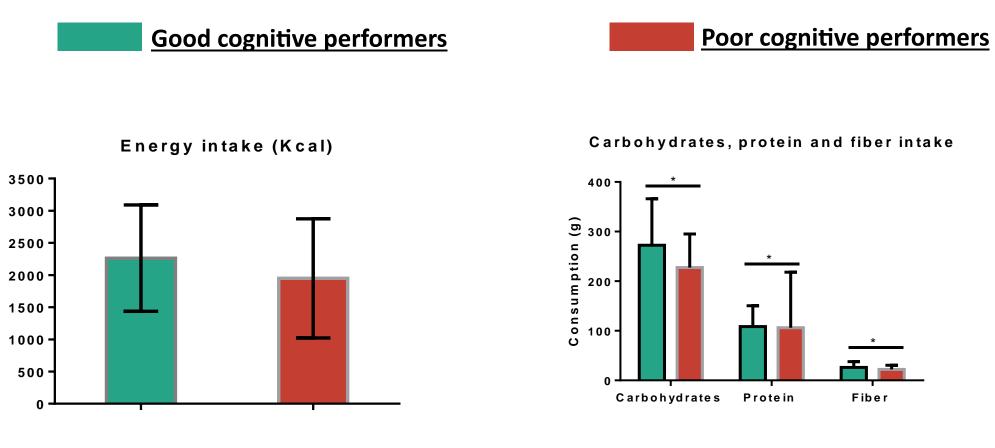
UNIVERSITY OF BIRMINGHAM TU/e Technische Universiteit University of Technology

Universidade do Minho

Belina Ferreira-Rodrigues^{1,2,3}, Carlos Portugal-Nunes^{1,2,3}, Teresa Castanho^{1,2,3}, Nuno Sousa^{1,2,3}, Nadine Santos^{1,2,3}.

1 - Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal

- 2-ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
 - 3- Clinical Academic Center Braga, Braga, Portugal


Results

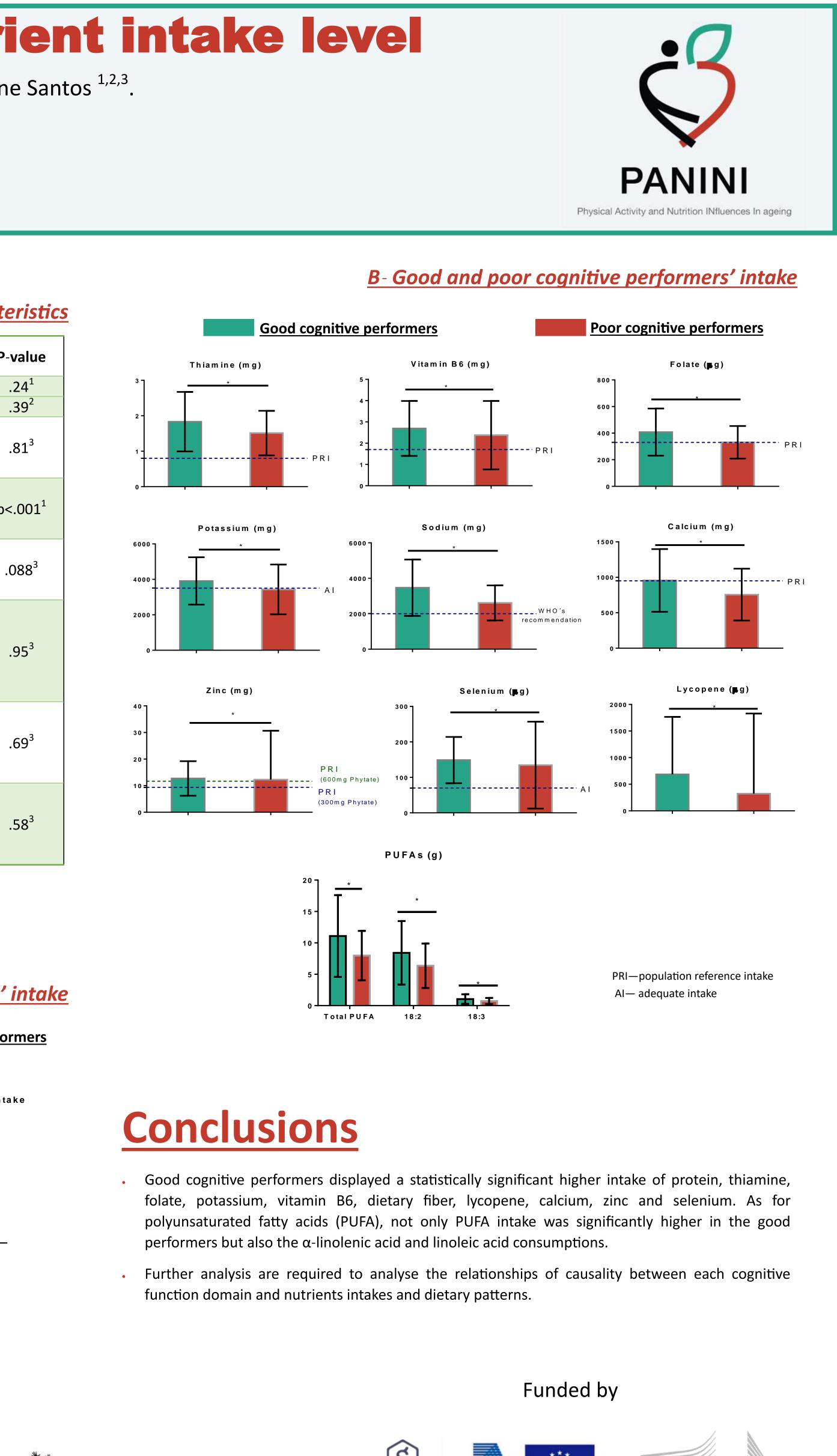
A- Baseline characteristics

Variables		Poor cognitive performers	Good cognitive performers	P-1
FEMALES (n, %)		26 (57.4%)	26 (44.8%)	
AGE (Mean, SD)		65.9 (7.3)	64.6 (8.7)	
OCCUPATION (n, %)	employed	10 (21.3%)	15 (25.9%)	
	retired	33 (70.2%)	39 (67.2%)	
	unemployed	4 (8.5%)	4 (6.9%)	
SCHOOL ATTAINMENT (n, %)	0-3 years	14 (29.8%)	7 (12.1%)	p<
	4 years	29 (61.7%)	27 (46.6%)	
	>4 years	4 (8.5%)	24 (41.4%)	
SMOKING HABITS (n, %)	Non-smoker	36 (76.6%)	32 (55.2%)	.(
	Former smoker	8 (17.0%)	19 (32.8%)	
	Smoker	3 (6.4%)	7 (12.1%)	
ALCOHOL CONSUMPTION (n, %)	<25g	23 (48.9%)	27 (47.4%)	
	25-30g	12 (25.5%)	12 (21.1%)	
	50-75g	3 (6.4%)	6 (10.5%)	
	75-100g	7 (14.9%)	9 (15.8%)	
	>100g	2 (4.3%)	3 (5.3%)	
PHYSICAL ACTIVITY (n, %)	Never	31 (66.0%)	41 (70.7%)	
	<3 times/week	5 (10.6%)	8 (13.8%)	
	≥ 3 times/week	6 (12.8%)	6 (10.3%)	
	Daily	5 (10.6%)	3 (5.2%)	
BMI CATEGORIES (n, %)	Normal	8 (17.4%)	14 (25.0%)	
	Overweight	24 (52.2%)	31 (55.4%)	
	Obesity Class I	11 (23.9%)	9 (16.1%)	
	Obesity Class II	3 (6.5%)	2 (3.6%)	

1 – Pearson chi-square p-value | 2 - Independent T-test p-value | 3- Fisher's Exact test p-value

B- Good and poor cognitive performers' intake

Partners Organisations



blueberry'

University Hospitals Birmingham NHS **NHS Foundation Trust**

JRC JRC

EUROPEAN COMMISSION

UNIVERSITÀ di **VERONA**

ঙ

GULBENKIAN

Physical Activity and Nutrition INfluences in ageing (PANINI) Project no. 675003