Tissue regeneration

Fracture numbers are expected to double by 2020, putting tremendous strain on healthcare systems worldwide. Osteoporosis-fragility fractures alone represent a cost of £1.5 billion to the NHS, and for individuals it can have a detrimental impact on quality of life. 

Current approaches have significant limitations; autologous grafts cannot meet demand and cause patient morbidity, allogeneic bone lacks bioactive factors, and growth factor-based approaches (e.g. BMP-2) may have serious side-effects and high costs. Consequently, there is a considerable need to devise new methods for the generation of large volumes of bone without associated patient morbidity.

New method for tissue regeneration, inspired by nature, described by scientists

New method for tissue regeneration, inspired by nature

Scientists at the Healthcare Technologies Institute have found a way of mimicking our body’s natural healing process, using cell derived nano-sized particles called vesicles, to repair damaged tissue.

The paper, published in Scientific Reports, describes a new approach to bone regeneration; stimulating cells to produce vesicles which can then be delivered to facilitate tissue regeneration.

The research team, led by the University of Birmingham, and in collaboration with University of Loughborough and University College Dublin, believe that the findings mark the first step in a new direction for tissue regeneration with the potential to help repair bone, teeth and cartilage.

In recent years, attention has been focused on cell-based approaches. However, translation is frequently prevented by insurmountable regulatory, ethical and economic issues. This novel solution delivers all the advantages of cell-based therapies but without using viable cells, by harnessing the regenerative capacity of nano-sized particles called extracellular vesicles that are naturally generated during bone formation.

The team have shown in-vitro that if extracellular vesicles are applied in combination with a simple phosphate the therapy outperforms the current gold standard, BMP-2.