Below is a list of publications by members of the research group Topology and Dynamics.

To appear

  • D. Allen and S. Baker. A general mass transference principle: Selecta Math. 38 pages.
  • S. Baker. Digit frequencies and self-affine sets with non-empty interior: Ergod. Dyn. Sys. 33 pages.
  • C. Good, M. Puljiz and P. Oprocha. Shadowing, asymptotic shadowing and s-limit shadowing: Fund. Math. 22 pages.
  • M. Kesseböhmer, A. Mosbach, T. Samuel and M. Steffens. Diffraction of return time measures: J. Stat. Phys. 11 pages.
  • M. Kesseböhmer, T. Samuel and K. Sender. The Sierpiński gasket as the Martin boundary of a non-isotropic Markov chain: J. Fractal Geom. 21 pages.
  • M. Kesseböhmer, T. Samuel and H. Weyer. Measure-geometric Laplacians for discrete distributions: Contemp. Math. 8 pages.
  • M. Gröger, M. Kesseböhmer, A. Mosbach, T. Samuel and M. Steffens. A classification of aperiodic order via spectral metrics and Jarnìk sets: Ergod. Dyn. Sys. 38 pages.
  • S. Kombrink and S. Winter. Lattice self-similar sets on the real line are not Minkowski measurable: Ergod. Dyn. Sys. 12 pages.


  • S. Baker. An analogue of Khintchine's theorem for self-conformal sets: Math. Proc. Cambridge Philos. Soc., 167(3), 567-597 (2019).
  • S. Baker. Exceptional digit frequencies and expansions in non-integer bases: Monatsh. Math., 190(1), 1–31 (2019).
  • S. Baker, J. M. Fraser and A. Máthé. Inhomogeneous self-similar sets with overlaps: Ergod. Dyn. Sys., 39(1), 1-18 (2019).
  • S. Baker and D. Kong. Numbers with simply normal beta-expansions: Math. Proc. Cambridge Philos. Soc., 167(1), 171-192 (2019).
  • S. Baker and N. Sidorov. An infinitely generated self-similar set with positive Lebesgue measure and empty interior: Proc. Amer. Math. Soc, 147, 4891-4899 (2019).
  • R. A. Barrera, S. Baker and D. Kong. Entropy, topological transitivity, and dimensional properties of unique q-expansions: Trans. Amer. Math. Soc., 371(5), 3209-3259 (2019).
  • S. Kombrink and T. Samuel. Fractal geometry and dynamics: Lond. Math. Soc. Newsl., 481, 24–29 (2019).
  • B. Li, T. Sahlsten, T. Samuel and W. Steiner. Denseness of intermediate β-shifts of finite type: Proc. Amer. Math. Soc., 147(5), 2045–2055 (2019).


  • S. Baker. Approximation properties of beta-expansions II: Ergod. Dyn. Sys., 38(5), 1627-1641 (2018).
  • C. Good and S. Macias. What is Topological about Topological Dynamics? Discrete Contin. Dyn. Syst., 38(3) 1007-1031 (2018).
  • C. Good and J. Meddaugh. Orbital shadowing, internal chain transitivity and ω-limit sets: Ergod. Dyn. Sys., 38(1), 143-154 (2018).
  • C. Good, M. Puljiz and L. Fernández. Almost Minimal Systems and Periodicity in Hyperspaces: Ergod. Dyn. Sys., 38(6), 2158-2179 (2018).
  • F. Dreher, M. Kesseböhmer, A. Mosbach, T. Samuel and M. Steffens. Regularity of aperiodic minimal subshifts: Bull. Math. Sci., 8(3), 413-434 (2018).
  • A. Fähnrich, S. Klein, A. Sergé, C. Nyhoegen, S. Kombrink, S. Möller, K. Keller, J. Westermann and K. Kalies. CD154 costimulation shifts the local T cell receptor repertoire not only during thymic selection but also during peripheral T-dependent humoral immune responses: Front. Immunol., 9, 1-11 (2018).
  • S. Kombrink. Renewal theorems for processes with dependent interarrival times: Advances in Applied Probability, 50(4), 1193-1216 (2018).


  • M. Kesseböhmer and S. Kombrink. A complex Ruelle-Perron-Frobenius Theorem for infinite Markov shifts with applications to renewal theory: Discrete Contin. Dyn. Syst. - Series S, 2(10), 335-352 (2017).


  • S. C. Dzul-Kifli and C. Good. The chaotic behavior on the unit circle: International Journal of Mathematical Analysis 10(25) 1245-1254 (2016).
  • C. Good and S. Macias. Symmetric products of generalized metric spaces: Topology Appl., 206, 93-114 (2016).
  • L. Fernández and C. Good. Shadowing for induced maps of hyperspaces: Fund. Math., 235, 277-286 (2016).
  • M. Kesseböhmer, T. Samuel and H. Weyer. A note on measure-geometric Laplacians: Monatsh. Math., 181(3), 643-655 (2016).
  • B. Li, T. Sahlsten and T. Samuel. Intermediate β-shifts of finite type: Discrete Contin. Dyn. Syst., 36(1), 323-344 (2016).
  • J. Kautzsch, M. Kesseböhmer and T. Samuel. On the convergence to equilibrium of unbounded observables under a family of intermittent interval maps: Ann. Henri Poincaré , 17(9), 2585-2621 (2016).
  • S. Kombrink, E. P. J. Pearse and S. Winter. Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable: Math Z., 283(3), 1049-1070 (2016).


  • L. Fernández, C. Good, M. Puljiz and Á. Ramírez. Chain transitivity in hyperspaces: Chaos, Solitons and Fractals, 81, 83-90 (2015).
  • C. Good and S. C. Dzul-Kifli. On Devaney Chaos and Dense Periodic Points - Period 3 and Higher Implies Chaos: Amer. Math. Monthly , 773-780 (2015).
  • J. Kautzsch, M. Kesseböhmer, T. Samuel and B. O. Stratmann. On the asymptotics of the α-Farey transfer operator: Nonlinearity , 28, 143-166 (2015).
  • M. Kesseböhmer and S. Kombrink. Minkowski content and fractal Euler characteristic for conformal graph directed systems: J. Fractal Geom. 2, 171-227 (2015).


  • W. R. Brian, C. Good, R. W. Knight and D. W. McIntyre. Finite Intervals in the Lattice of Topologies: Order, 31(3), 325-335 (2014).
  • F. Dreher and T. Samuel. Continuous images of Cantor's ternary set: Amer. Math. Monthly , 121(7), 640-643 (2014).
  • T. Samuel, N. Snigireva and A. Vince. Embedding the symbolic dynamics of Lorenz maps: Math. Proc. Camb. Phil. Soc., 156(3), 505-519 (2014).


  • A. D. Barwell, C. Good, P. Oprocha, and B. E. Raines. Characterizations of ω-limit sets in topologically hyperbolic systems: Discrete Contin. Dyn. Syst., 33(5), 1819-1833 (2013).
  • M. Kesseböhmer and T. Samuel. Spectral metric spaces for Gibbs measures: J. Funct. Anal., 31, 1801-1828 (2013).
  • T. Samuel. A simple proof of Vitali's theorem for signed measures: Amer. Math. Monthly. , 120(7) 654-660 (2013).


  • U. Freiberg and S. Kombrink. Minkowski content and local Minkowski content for a class of self-conformal sets: Geom. Dedicata 159(1), 307-325 (2012).
  • C. Good and K. Papadopoulos. A topological characterization of ordinals - van Dalen and Wattel revisited: Topology Appl., 159(6), 1565-1572 (2012).
  • M. Kesseböhmer and S. Kombrink. Fractal curvature measures and Minkowski content for self-conformal subsets of the real line: Adv. in Math. 230, 2474-2512 (2012).