Recognising the UK’s strong research capabilities in Quantum Technologies, the UK Government invested £270 million to create the UK National Quantum Technologies Programme, a collaborative initiative to advance technology and provide long-term benefits to society. Four quantum technology hubs have been created within the programme, each with a particular focus. Of this funding, the University of Birmingham has received £80million to lead the UK National Quantum Technology Hub for Sensors and Metrology with its partner universities.

16472 Quantum Technology Heroes Website Banner AW

Quantum Technology is based upon the science of the very small. It utilises an understanding of the physics of atomic particles, to harness the ‘spooky’ side of quantum mechanics. It has been discovered that a particle can be in two places at the same time, moving in two directions. If we let a particle simultaneously explore two paths at different heights, it can be used to measure gravity and acceleration. If the paths enclose an area, it will sense rotation and if they differ internally, it will measure time or magnetic fields with the utmost precision.

Professor Kai Bongs and his team at the University of Birmingham Hub for Quantum Technology in Sensors and Metrology are working with partners across industry and academia encompassing different disciplines including Electrical Engineering, Civil Engineering and Psychology to translate laboratory science in to real-world situations to solve the challenges facing society and the environment today. The quantum sensors developed in the Hub exploit the nature and internal structure of atoms and ions as quantum probes. The Hub works closely with industry partners to provide a space for innovation and translate the Hub’s world-leading research in quantum sensors into real-world solutions.

Ultra-Precise Sensors

The team, comprising physicists and civil engineers is developing gravity sensors to detect buried infrastructure, enabling a new and better way of seeing underground and spotting hazards before they arise, for example identifying sinkholes before they open. This allows for carrying out more targeted and effective maintenance of our roads, thereby reducing congestion and traffic jams. The sensors developed by Professor Kai Bongs, Dr Michael Holynski and their team within the School of Physics and Astronomy will use cold-atom technology to provide a much more precise and faster measurement of gravity. Gravity sensors using atoms as probe particles can sense a person just by their gravitational field. Since gravity penetrates any material, these devices facilitate ‘seeing’ into the ground. They will, in particular, be sensitive to density variations. Enabling these sensors to deliver real-world benefit is an interdisciplinary effort, and the team from Physics is working closely with Dr Nicole Metje and her team within the Department of Civil Engineering to link to end-users and identify key applications and requirements. These gravity sensors will make the invisible visible, improve health and safety, and reduce risks during excavation.

This technology will allow us to map what lies beneath our feet and detect a variety of hidden infrastructure including mineshafts, sinkholes, pipes and tunnels. This will revolutionise how construction takes place - we are currently unable to pinpoint sources of problems such as the bursting of underground pipes, which is why roadworks can be so extensive and disruptive. By showing the exact location of problems underground, the Hub’s research will reduce disruption on the nation’s roads.

Quantum technology gravity sensors are an exciting innovation which will allow us to use our underground space much more safely and will offer us new ways to use that space in future, including building into the ground rather than above it.

Professor Kai Bongs

Professor Kai Bongs

“Quantum technology has the potential to transform the world in ways we can barely imagine.”

Quantum clocks

Timekeeping is essential for modern life. Much of our everyday technology is underpinned by precision timing, including satellite navigation, high-speed financial trade and broadband communication. Professor Kai Bongs, Dr Yeshpal Singh and their team, in the Quantum Technology Hub for Sensors and Metrology have been conducting research to develop ultra-precise optical clocks.

To enable new applications and improve existing technologies, more accurate and precise timing is required. As part of the Quantum Technology Hub at Birmingham we are developing compact, portable and robust “optical clocks” which will have a thousand to ten thousand times higher precision than the ones currently available.

The practical applications of precise clocks are widespread and varied: such as boosting the future of the communications network, including deep-space satellite navigation and communications, and driving the next generation of broadband for a super high-speed internet. Quantum clocks are making time more accurate; the sensors used in them are not just sensitive but very quick, for example the clocks built as a result of this technology will be found in fast-paced, high-frequency trading in financial markets, where the measurement of time to determine who bids first needs to be accurate.

Health benefits

The revolutionary technology coming out of the Quantum Technology Hub will also have medicinal and health applications.

Atomic magnetic sensors are precise enough to pick up tiny magnetic fields associated with brain activity or cell communications. Research could produce technologies which are steered by thought, revolutionising processes computer games to dangerous work environments as well as healthcare. One such improvement will bring about a non-invasive way of measuring brain activity to further research into dementia.

Dementia is often related to obstructed communication channels in the brain. Magnetic sensors could soon be used to look deep into the brain. The Hub has theorised that a sensitive magnetic helmet could pick up cerebral communications and identify problems, allowing doctors to provide earlier diagnoses for dementia, assess the efficacy of drugs, and even help to prevent the onset of symptoms in those who have been diagnosed in order to ensure a longer and more fulfilling life.

UK National Quantum Technology Hub

Sensors and Metrology

UK National Quantum Technology Hub - Sensors and Metrology

Gravity Sensors

Quantum Clocks

Find out more

Ψ in the sky ➤
How can Quantum Technology make the underground visible? ➤
Gravity at Birmingham ➤
National Buried Infrastructure Facility (NBIF) ➤
UK National Quantum Technology Hub Sensors and Metrology - Annual Reports ➤
University of Birmingham heads £80m quantum technology hub ➤
Learn about our other Birmingham Heroes ➤