Recent publications
Article
van der Oord, C, Sachs, M, Kovács, DP, Ortner, C & Csányi, G 2023, 'Hyperactive learning for data-driven interatomic potentials', npj Computational Materials, vol. 9, no. 1, 168. https://doi.org/10.1038/s41524-023-01104-6
Leimkuhler, B & Sachs, M 2022, 'Efficient numerical algorithms for the generalized Langevin equation', SIAM Journal on Scientific Computing, vol. 44, no. 1, pp. A364-A388. https://doi.org/10.1137/20M138497X
Sachs, M, Sen, D, Lu, J & Dunson, D 2022, 'Posterior computation with the Gibbs zig-zag sampler', Bayesian Analysis. https://doi.org/10.1214/22-BA1319
Sen, D, Sachs, M, Lu, J & Dunson, DB 2020, 'Efficient posterior sampling for high-dimensional imbalanced logistic regression', Biometrika, vol. 107, no. 4, pp. 1005-1012. https://doi.org/10.1093/biomet/asaa035
Leimkuhler, B, Sachs, M & Stoltz, G 2020, 'Hypocoercivity Properties of Adaptive Langevin Dynamics', SIAM Journal on Applied Mathematics, vol. 80, no. 3, pp. 1197-1222. https://doi.org/10.1137/19M1291649
Lu, J, Sachs, M & Steinerberger, S 2020, 'Quadrature Points via Heat Kernel Repulsion', Constructive Approximation, vol. 51, no. 1, pp. 27-48. https://doi.org/10.1007/s00365-019-09471-4
Sachs, M, Leimkuhler, B & Danos, V 2017, 'Langevin dynamics with variable coefficients and nonconservative forces: From stationary states to numerical methods', Entropy, vol. 19, no. 12, 647. https://doi.org/10.3390/e19120647
Conference contribution
Leimkuhler, B & Sachs, M 2019, Ergodic Properties of Quasi-Markovian Generalized Langevin Equations with Configuration Dependent Noise and Non-conservative Force. in G Giacomin, S Olla, E Saada, H Spohn, G Stoltz & G Stoltz (eds), Stochastic Dynamics Out of Equilibrium - Institut Henri Poincaré, 2017. Springer Proceedings in Mathematics and Statistics, vol. 282, Springer, pp. 282-330, International workshop on Stochastic Dynamics out of Equilibrium, IHPStochDyn 2017, Paris, France, 12/06/17. https://doi.org/10.1007/978-3-030-15096-9_8
Preprint
Oord, CVD, Sachs, M, Kovács, DP, Ortner, C & Csányi, G 2022 'Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials'. https://doi.org/10.48550/arXiv.2210.04225
Herschlag, G, Mattingly, JC, Sachs, M & Wyse, E 2020 'Non-reversible Markov chain Monte Carlo for sampling of districting maps' arXiv. https://doi.org/10.48550/arXiv.2008.07843
View all publications in research portal