Dr Haixing Miao PhD

Dr Haixing Miao

School of Physics and Astronomy
Senior Lecturer
Birmingham Fellow
Ernst Rutherford Fellow

Contact details

School of Physics
University of Birmingham
B15 2TT

Haixing Miao is a Birmingham Fellow and also STFC Ernst Rutherford Fellow in the School of Physics and Astronomy

His current research interests are improving sensitivity of quantum-limited measurement devices that include gravitational-wave detectors and optomechanical sensors in general, and using these devices to study quantum behaviours of macroscopic objects.


  • PhD in Physics, University of Western Australia, 2010        
  • BA in Astrophysics, University of Science and Technology of China, 2006


Haixing Miao started his postgraduate research in the gravitational-wave group at the University of Western Australia in 2007. He got his PhD in 2010. Afterwards, he moved to California Institute of Technology as a postdoctoral scholar, where he continued working on quantum aspects of gravitational-wave detectors and optomechanical devices in general.

He joined Birmingham in 2014 as the Marie-Curie International-Incoming Fellow. In 2016, he was awarded the STFC Ernst Rutherford Fellow and also the Birmingham Fellow.


Second-year tutorial


• Quantum limit of gravitational-wave detectors and optomechanical sensors
• Classical and quantum interferometry
• Theory of continuous quantum measurements
• Macroscopic quantum mechanics

Other activities

• Member of LIGO Scientific Collaboration



[1]        H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, (Springer Theses) Springer (2012).

[2]        Y. Chen and H. Miao, Quantum Theory of Laser-Interferometer GW Detectors in Advanced Gravitational Wave Detectors, Edited by D. G. Blair, L. Ju, C. Zhao, and E. J. Howell, Cambridge University Press (2012).

Journals (selected):

[3]        H. Miao, Y. Ma, C. Zhao, and Y. Chen, Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters, Phys. Rev. Lett. 115, 211104 (2015).

[4]        Y. Ma, H. Miao, C. Zhao, and Y. Chen, Quantum noise of white light cavity using double-pumped gain medium, Phys. Rev. A 92, 023807 (2015).

[5]        Y. Ma, S. Danilishin, C. Zhao, H. Miao, W. Z. Korth, Y. Chen, R. Ward, and D. G. Blair, Narrowing the Filter-Cavity Bandwidth in Gravitational-Wave Detectors via Optomechanical Interaction, Phys. Rev. Lett. 113, 151102 (2014).

[6]        H. Miao, H. Yang, R. X Adhikari, and Y. Chen, Quantum Limits of Interferometer Topologies for Gravitational Radiation Detection, Class. Quant. Gravity. 31, 165010 (2014).

[7]        M. Wang, H. Miao, A. Freise, and Y. Chen, Sensitivity of intra-cavity filtering schemes for detecting gravitational waves, Phys. Rev. D 89, 062009 (2014).

[8]        M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, Realistic filter cavities for advanced gravitational wave detectors, Phys. Rev. D 88, 022002 (2013).

[9]       T. Hong, H. Yang, H. Miao, and Y. Chen, Open quantum dynamics of single-photon optomechanical devices, Phys. Rev. A 88, 023812 (2013).

[10]      W. Zach Korth, H. Miao, T. Corbitt, G. D. Cole, Y. Chen, and R. X. Adhikari, Suppression of quantum-radiation pressure noise in an optical spring, Phys. Rev. A 88, 033805 (2013).

[11]      H. Yang, H. Miao, D. Lee, B. Helou, and Y. Chen, Macroscopic Quantum Mechanics in a Classical Spacetime, Phys. Rev. Lett. 110, 170401 (2013).

[12]      H. Müller-Ebhardt, H. Miao, S. Danilishin, and Y. Chen, Quantum-state steering in optomechanical devices, arXiv: 1211.4315 (2012).

[13]      H. Yang, H. Miao, and Y. Chen, Non-adiabatic elimination of auxiliary modes in continuous quantum measurements, Phys. Rev. A (rapid communication) 85, 040101 (2012).

[14]      F. Y. Khalili, H. Miao, H. Yang, A. H. Safavi-Naeini, O. Painter, and Y. Chen, Quantum back-action in measurements of zero-point mechanical oscillations, Phys. Rev. A 86, 033840 (2012).

[15]      F. Y. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors, Phys. Rev. D 83, 062003 (2011).

[16]      H. Miao, S. Danilishin, H. Müller-Ebhardt, H. Rehbein, K. Somiya, and Y. Chen, Probing macroscopic quantum states with a sub-Heisenberg accuracy, Phys. Rev. A 81, 012114 (2010).

[17]      H. Miao, S. Danilishin, H. Müller-Ebhardt, and Y. Chen, Achieving ground state and enhancing entanglement by recovering information, New Journal of Phys. 12, 083032 (2010).

[18]      F. Ya. Khalili, S. Danilishin, H. Miao, H. Mülller-Ebhardt, H. Yang, and Y. Chen, Preparing non-Gaussian quantum state of a mechanical oscillator, Phys. Rev. Lett. 105, 070403 (2010).

[19]      H. Miao, S. Danilishin, and Y. Chen, Universal quantum entanglement between an oscillator and continuous fields, Phys. Rev. A 81, 052307 (2010).

[20]      H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, Standard Quantum Limit for Probing Mechanical Energy Quantization, Phys. Rev. Lett. 103, 100402 (2009).

[21]      F. Y. Khalili, H. Miao, and Y. Chen, Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input, Phys. Rev. D 80, 042006 (2009).

[22]      H. Miao, C. Zhao, L. Ju, and D. G. Blair, Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions, Phys. Rev. A 79, 063801 (2009).

[23]      C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, and D. G. Blair, Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments, Phys. Rev. Lett. 102, 243902 (2009).

[24]      B. Abbott et al. (LIGO Scientific Collaboration), Observation of a kilogram-scale oscillator near its quantum ground state, New J. Phys. 11, 073032 (2009).