Dr Haixing Miao PhD

Dr Haixing Miao

School of Physics and Astronomy
Birmingham Fellow
Ernst Rutherford Fellow

Contact details

School of Physics
University of Birmingham
B15 2TT

Haixing Miao is a Birmingham Fellow and also STFC Ernst Rutherford Fellow in the School of Physics and Astronomy

His current research interests are improving sensitivity of quantum-limited measurement devices that include gravitational-wave detectors and optomechanical sensors in general, and using these devices to study quantum behaviours of macroscopic objects.


  • PhD in Physics, University of Western Australia, 2010        
  • BA in Astrophysics, University of Science and Technology of China, 2006


Haixing Miao started his postgraduate research in the gravitational-wave group at the University of Western Australia in 2007. He got his PhD in 2010. Afterwards, he moved to California Institute of Technology as a postdoctoral scholar, where he continued working on quantum aspects of gravitational-wave detectors and optomechanical devices in general.

He joined Birmingham in 2014 as the Marie-Curie International-Incoming Fellow. In 2016, he was awarded the STFC Ernst Rutherford Fellow and also the Birmingham Fellow.


Second-year tutorial


• Quantum limit of gravitational-wave detectors and optomechanical sensors
• Classical and quantum interferometry
• Theory of continuous quantum measurements
• Macroscopic quantum mechanics

Other activities

• Member of LIGO Scientific Collaboration



[1]        H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, (Springer Theses) Springer (2012).

[2]        Y. Chen and H. Miao, Quantum Theory of Laser-Interferometer GW Detectors in Advanced Gravitational Wave Detectors, Edited by D. G. Blair, L. Ju, C. Zhao, and E. J. Howell, Cambridge University Press (2012).

Journals (selected):

[3]        H. Miao, Y. Ma, C. Zhao, and Y. Chen, Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters, Phys. Rev. Lett. 115, 211104 (2015).

[4]        Y. Ma, H. Miao, C. Zhao, and Y. Chen, Quantum noise of white light cavity using double-pumped gain medium, Phys. Rev. A 92, 023807 (2015).

[5]        Y. Ma, S. Danilishin, C. Zhao, H. Miao, W. Z. Korth, Y. Chen, R. Ward, and D. G. Blair, Narrowing the Filter-Cavity Bandwidth in Gravitational-Wave Detectors via Optomechanical Interaction, Phys. Rev. Lett. 113, 151102 (2014).

[6]        H. Miao, H. Yang, R. X Adhikari, and Y. Chen, Quantum Limits of Interferometer Topologies for Gravitational Radiation Detection, Class. Quant. Gravity. 31, 165010 (2014).

[7]        M. Wang, H. Miao, A. Freise, and Y. Chen, Sensitivity of intra-cavity filtering schemes for detecting gravitational waves, Phys. Rev. D 89, 062009 (2014).

[8]        M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, Realistic filter cavities for advanced gravitational wave detectors, Phys. Rev. D 88, 022002 (2013).

[9]       T. Hong, H. Yang, H. Miao, and Y. Chen, Open quantum dynamics of single-photon optomechanical devices, Phys. Rev. A 88, 023812 (2013).

[10]      W. Zach Korth, H. Miao, T. Corbitt, G. D. Cole, Y. Chen, and R. X. Adhikari, Suppression of quantum-radiation pressure noise in an optical spring, Phys. Rev. A 88, 033805 (2013).

[11]      H. Yang, H. Miao, D. Lee, B. Helou, and Y. Chen, Macroscopic Quantum Mechanics in a Classical Spacetime, Phys. Rev. Lett. 110, 170401 (2013).

[12]      H. Müller-Ebhardt, H. Miao, S. Danilishin, and Y. Chen, Quantum-state steering in optomechanical devices, arXiv: 1211.4315 (2012).

[13]      H. Yang, H. Miao, and Y. Chen, Non-adiabatic elimination of auxiliary modes in continuous quantum measurements, Phys. Rev. A (rapid communication) 85, 040101 (2012).

[14]      F. Y. Khalili, H. Miao, H. Yang, A. H. Safavi-Naeini, O. Painter, and Y. Chen, Quantum back-action in measurements of zero-point mechanical oscillations, Phys. Rev. A 86, 033840 (2012).

[15]      F. Y. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors, Phys. Rev. D 83, 062003 (2011).

[16]      H. Miao, S. Danilishin, H. Müller-Ebhardt, H. Rehbein, K. Somiya, and Y. Chen, Probing macroscopic quantum states with a sub-Heisenberg accuracy, Phys. Rev. A 81, 012114 (2010).

[17]      H. Miao, S. Danilishin, H. Müller-Ebhardt, and Y. Chen, Achieving ground state and enhancing entanglement by recovering information, New Journal of Phys. 12, 083032 (2010).

[18]      F. Ya. Khalili, S. Danilishin, H. Miao, H. Mülller-Ebhardt, H. Yang, and Y. Chen, Preparing non-Gaussian quantum state of a mechanical oscillator, Phys. Rev. Lett. 105, 070403 (2010).

[19]      H. Miao, S. Danilishin, and Y. Chen, Universal quantum entanglement between an oscillator and continuous fields, Phys. Rev. A 81, 052307 (2010).

[20]      H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, Standard Quantum Limit for Probing Mechanical Energy Quantization, Phys. Rev. Lett. 103, 100402 (2009).

[21]      F. Y. Khalili, H. Miao, and Y. Chen, Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input, Phys. Rev. D 80, 042006 (2009).

[22]      H. Miao, C. Zhao, L. Ju, and D. G. Blair, Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions, Phys. Rev. A 79, 063801 (2009).

[23]      C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, and D. G. Blair, Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments, Phys. Rev. Lett. 102, 243902 (2009).

[24]      B. Abbott et al. (LIGO Scientific Collaboration), Observation of a kilogram-scale oscillator near its quantum ground state, New J. Phys. 11, 073032 (2009).