Dr Nicholas Barrand BSc, MSc, PhD

Dr Nicholas Barrand

School of Geography, Earth and Environmental Sciences
Lecturer in Geosciences

Contact details

School of Geography, Earth and Environmental Sciences
University of Birmingham
B15 2TT

Nick is a glaciologist, specialising in mass balance and dynamics of the Earth's glaciers and ice sheets. His research aims to understand how and why Earth's land ice cover is changing and the impact of these changes on global sea levels. This research involves application and analysis of airborne and satellite remote sensing tools, in situ measurements and numerical models.


2008 – PhD, Glaciological Remote Sensing, University of Wales Swansea
2002 – MSc, Geographical Information Systems, University of Leeds (Distinction)
2001 – BSc, Geography, Newcastle University (First Class Honours)


  • ESCM133 Topics in Geology 
  • GGM203 Geomatics
  • ESCM237 Field Skills, Assynt residential field course
  • GGM348 Remote Sensing of the Cryosphere (module lead)

Postgraduate supervision

Excellent and eligible students are encouraged to contact me informally in the first instance, and then to apply for postgraduate research in glaciology and/or remote sensing at the University of Birmingham. Candidates will normally hold relevant masters and first class or equivalent honours degrees in numerate disciplines such as Geophysics, Earth Science, Physical Geography, Physics, Mathematics or Computer Science. Research postgraduate opportunities are advertised on the School of Geography, Earth and Environmental Sciences (GEES) PhD Project webpages, and those of the Central England NERC Training Alliance (CENTA). Prospective students are also encouraged to contact me to suggest or to develop their own ideas for postgraduate research projects. I am broadly interested in supervision of research projects in the following areas: glacier and ice sheet mass balance, remote sensing of ice flow dynamics, remote sensing of snow and ice melt, ice flow and melt modelling, regional-scale glacier area, volume and velocity change, response of glaciers to climate change, ice shelf processes, and environmental and hydrological applications of remote sensing tools, particularly in the polar regions.

Students from the UK and EU are eligible for competitively-funded studentship support from NERC via CENTA, although other options are available. Prospective international students are advised to contact me to discuss relevant funding opportunities.

Current Research Postgraduate Students:

  • Marko Closs (Ph.D. 2017-2020; with S. Bacallado, Cambridge)
  • Arie Vatresia (Ph.D. 2015-2019; with J. Sadler, GEES)
  • Jonathan Mackay (Ph.D. 2015-2019; with D. Hannah & BGS)
  • Clemens Schannwell (Ph.D. 2013-2017; with BAS)

Former Research Postgraduate Students:

  • Marit van Tiel (M.Sc. 2016; with A. van Loon, Wageningen)
  • Fred Warner (M.Sci. 2016; with G. Sambrook Smith, GEES)
  • Benjamin Man (M.Sci., 2014; with J. Wheeley, GEES)
  • Robert Way (M.Sc. 2013; with T. Bell, MUN)
  • Jodie Chadbourn (M.Sc. 2013; with T. Bell, MUN)

Other activities

Member of the American Geophysical Union (AGU), European Geosciences Union (EGU), International Glaciological Society (IGS) and Remote Sensing and Photogrammetry Society (RSPSoc). EGU General Assembly session convener for 'Glaciers and ice caps under climate change’ and Cryospheric Sciences Division, Secretary for ice caps. 

Review editor - Frontiers in Cryospheric Science, 2015-present. Scientific reviewer for Natural Environment Research Council (NERC), National Science Federation (NSF), NASA, National Geographic Society, Instituto Antarctico Chileno (INACH), The Leverhulme Trust, Arctic, Annals of Glaciology, Arctic, Antarctic and Alpine Research, Canadian Journal of Remote Sensing, The Cryosphere, Geomorphology, Geophysical Research Letters, International Journal of Remote Sensing, Journal of Geophysical Research, Journal of Glaciology, Polar Record, Remote Sensing of Environment.

More than 35 weeks remote fieldwork during seven glaciological field seasons (Svalbard, 4; Canadian high- and sub-Arctic, 3), and shorter campaigns in the European Alps and Canadian Rockies. Specific field skills include: glacier mass balance, surface and bed topographic surveying (GPS and ice-penetrating radar), ground support for airborne campaigns (GPS, maintenance of corner reflectors), temperature sensors and automatic weather stations, shallow firn and ice coring, snow density measurements, near-surface snow radar.


Google Scholar - Publications

[ - ] Milner, A.M. Barrand, N.E., Battin, T., Brittain, J., Brown, L., Cauvy, S., Fuereder, L., Gislason, G.M., Hannah, D.M., Hodson, A.J., Hood, E., Jacobsen, D., Khamis, K., Lencioni, V., Olafsson, J.S., Robinson, C., Tranter, M. (manuscript in review, 2016) `Glacier shrinkage driving global changes in downstream ecosystems.’ In review, 2016. [http | .pdf]

[ - ] Costi, J., Arigony-Neto, J., Simoes, J.C., Mavlyudov, B., Braun, M. & Barrand, N.E. (manuscript in revision, 2016) ’Estimating surface melt and runoff on the Antarctic Peninsula using ERA-Interim reanalysis data.’ Manuscript in revision, 2016. [http | .pdf]

[28] Barrand, N.E., Way, R.G., Bell, T., and Sharp, M.J. (2017) `Recent changes in area and thickness of Torngat Mountain glaciers (northern Labrador, Canada), The Cryosphere, 11, 157-168, doi:10.5194/tc-11-157-2017. [http | .pdf]

[27] Schannwell, C., Barrand, N.E. & Radic ́, V (2016) `Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula.` Earth and Planetary Science Letters, 453, 161–170, doi.org/10.1016/j.epsl.2016.07.054. [http | .pdf]

[26] Bracegirdle, T.J., Barrand, N.E., Kusahara, K. & Wainer, I. (2016) `Predicting Antarctic climate using climate models.` Environments Portal – Antarctic Climate, Version 1. environments.aq [http | .pdf]

[25] Meredith, M.P., Venables, H.J., Stammerjohn, S.E., Ducklow, H.W., Martinson, D.G., Ianuzzi, R.A., Leng, M.J., van Wessem, J.M., Reijmer, C. and Barrand, N.E. (2016) `Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula.` Deep Sea Research Part II: Topical Studies in Oceanography, doi:10.1016/j.dsr2.2016.04.019. [http | .pdf

[24] Schannwell, C., Barrand, N.E. & Radic, V. (2015) ‘Modelling ice dynamic contributions to sea-level rise from the Antarctic Peninsula.’ Journal of Geophysical Research - Earth Surface, 120 (11), 2374-2392, doi:10.1002/2015JF003667. [http | .pdf

[23] Arendt, A. and the Randolph Consortium (including Barrand, N.E.) (2015) ‘Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 5.0.’ Global Land Ice Measurements from Space, Boulder, Colorado, USA. Digital Media. [http | .pdf]

[22] van Wessem, J.M., Ligtenberg, S.R.M., Reijmer, C.H., van de Berg, W.J., van den Broeke, M.R., Barrand, N.E., Thomas, E., Turner, J., Wuite, J., Scambos, T.A. & van Meijgaard, E. (2015) ’The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution.’ The Cryosphere Discuss., 9, 5097-5136, doi:10.5194/tcd-9-5097-2015. [http | .pdf]

[21] Way, R.G., Bell, T.J., & Barrand, N.E. (2015) 'Glacier change from the early Little Ice Age to 2005 in the Torngat Mountains, northern Labrador, Canada.’ Geomorphology, 246, 558-569, doi:10.1016/j.geomorph.2015.07.006. [http | .pdf]

[20] Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Kuipers Munneke, P., King, J. & Barrand, N.E. (2014) 'Surface melt and ponding on Larsen C Ice Shelf and the impact of foehn winds.' Antarctic Science, 26 (6), 625-635, doi.org/10.1017/S0954102014000339. [http | .pdf]

[19] Way, R.G., Bell, T.J. & Barrand, N.E. (2014) 'An inventory and topographic analysis of the glaciers of the Torngat Mountains, northern Labrador, Canada.' Journal of Glaciology, 60 (223), doi:10.3189/2014JoG13J195. [http | .pdf]

[18 ] Davies, B.J., Golledge, N.R., Glasser, N.J., Carrivick, J.L., Ligtenberg, S.R.M., Barrand, N.E., van den Broeke, M.R., Hambrey, M.J. & Smellie, J.L. (2014) `Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula.' Nature Climate Change, 4, 993-998, doi:10.1038/nclimate2369. [http | .pdf]

[17] Pfeffer, W.T., Arendt, A.A., Bliss, A., Bolch, T., Cogley, J.G., Gardner, A.S., Hagen, J.O., Hock, R., Kaser, G., Kienholz, C., Miles, E.S., Moholdt, G., Mölg, N., Paul, F., Radic ́, V., Rastner, P., Raup, B., Rich, J., Sharp, M.J. & the Randolph Consortium (including Barrand, N.E.) (2014) ‘The Randolph Glacier Inventory: a globally complete inventory of glaciers.’ Journal of Glaciology, 60 (221), 537-552, doi:10.3189/2014JoG13J176. [http | .pdf]

[16] Barrand, N.E., Machguth, H., & Hagen, J.O. (2013) `Observing changes in near-polar glaciers in the Northern and Southern Hemispheres.' EOS, Transactions American Geophysical Union, 94 (23), 208, doi:10.1002/2013EO230007. [http | .pdf]

[15] Barrand, N.E., Hindmarsh, R.C.A., Arthern, R.J., Williams, C.R., Mouginot, J., Scheuchl, B., Rignot, E., Ligtenberg, S.R.M., van den Broeke, M.R., Edwards, T.L., Cook, A.J. & Simonsen, S.B. (2013) ‘Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200.’ Journal of Glaciology, 59 (215), 397-409, doi:10.3189/2013JoG12J139. [http | .pdf]

[14] Turner, J., Barrand, N.E., Bracegirdle, T.J., Convey, P., Hodgson, D.A., Jarvis, M., Jenkins, A., Marshall, G., Meredith, M.P., Roscoe, H., Shanklin, J., French, J., Goose, H., Guglielmin, M., Gutt, J., Jacobs, S., Kennicutt, M.C., Masson-Delmotte, V., Mayewski, P., Navarro, F., Robinson, S., Scambos, T., Sparrow, M., Summerhayes, C., Speer, K. & Klepikov, A. (2013) ‘Antarctic climate change and the environment - an update.’ Polar Record, 1-23, doi:10.1017/S0032247413000296. [http | .pdf]

[13] Barrand, N.E., Vaughan, D.G., Steiner, N., Tedesco, M., Kuipers Munneke, P., van den Broeke, M.R. & Hosking, S.J. (2013) ‘Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modelling.’ Journal of Geophysical Research - Earth Surface, 118, 1-16, doi:10.1029/2012JF002559. [http | .pdf]

[12] Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Furukawa, T., Gogineni, P., Griggs, J.A., Hamilton, G., Hindmarsh, R.C.A., Holmlund, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T., King, E.C., Krabill, W., Riger-Kusk, M., Tinto, K., Langley, K.A., Popov, S.V., Rignot, E., Rippin, D., Rivera, A., Ross, N., Siegert, M.J., Shibuya, K., Smith, A.M., Steinhage, D., Studinger, M., Sun, B., Thomas, R.H., Tabacco, I., Welch, B., Young, D.A., Xiangbin, C. & Zirizzotti, A. (2013) ‘Bedmap2: improved ice bed, surface and thickness datasets for Antarctica.’ The Cryosphere, 7, 375-393, doi:10.5194/tc-7-375-2013. [http | .pdf]

[11] Paul, F., Barrand, N.E., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S., Konovalov, V., Le Bris, R., Moelg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K. & Winsvold, S. (2013) ‘On the accuracy of glacier outlines derived from remote sensing data.’ Annals of Glaciology, 54 (63), 171-182, doi:10.3189/2013AoG63A296. [http | .pdf]

[10] Irvine-Fynn, T.D.L., Hanna, E., Barrand, N.E., Porter, P.R., & Hodson, A.J. (2012) ‘Examination of a physically-based, high-resolution, distributed Arctic temperature-index melt model, on Midtre Lovénbreen, Svalbard.’ Hydrological Processes, doi: 10.1002/hyp.9526. [http | .pdf]

[9] James, T.D., Murray, T., Barrand, N.E., Sykes, H.J., Fox, A.J., and King, M.A. (2012) ‘Observations of enhanced thinning in the upper reaches of Svalbard glaciers.’ The Cryosphere, 6, 1369–1381, doi:10.5194/tc-6-1369- 2012. [http | .pdf]

[8] Cook, A.J., Murray, T., Luckman, A., Vaughan, D.G. & Barrand, N.E. (2012) ‘A new 100-m Digital Elevation Model of the Antarctic Peninsula from ASTER Global DEM: methods and accuracy assessment.’ Earth System Science Data, 4, 129-142, doi: 10.5194/essd-4-129-2012. [http | .pdf]

[7] Irvine-Fynn, T.D.L., Barrand, N.E., Porter, P.R., Hodson, A.J. and Murray, T. (2011) ‘Recent High-Arctic glacial sediment redistribution: a process perspective using airborne lidar.’ Geomorphology, 125, 27–39, doi: 10.1016/j.geomorph.2010.08.012. [http | .pdf]

[6] Barrand, N.E. and Sharp, M.J. (2010) ‘Sustained rapid shrinkage of Yukon glaciers since the 1957–58 International Geophysical Year.’ Geophysical Research Letters, 37, L07501, doi: 10.1029/2009GL042030. [http | .pdf]

[5] Barrand, N.E., James, T.D. and Murray, T. (2010) ‘Spatiotemporal variability in elevation changes of two high-Arctic valley glaciers.’ Journal of Glaciology, 56 (199), 771-780, doi: 10.3189/002214310794457362. [http | .pdf]

[4] Barrand, N.E., Murray, T., James, T.D., Barr, S.L. and Mills, J.P. (2009) ‘Optimising photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground control points.’ Journal of Glaciology, 55 (189), 106-116, doi: 10.3189/002214309788609001 [http | .pdf]

[3] Kohler, J., James, T.D., Murray, T., Nuth, C., Brandt, O., Barrand, N.E., Aas, H.F. and Luckman, A.J. (2007) ‘Acceleration in thinning rate on western Svalbard glaciers.’ Geophysical Research Letters, 34, L18502, doi:10.1029/2007GL030681. [http | .pdf]

[2] James, T.D., Murray, T., Barrand, N.E. and Barr, S.L. (2006) ‘Extracting photogrammetric ground control from lidar DEMs for change detection.’ Photogrammetric Record, 21 (116), 312-328, doi: 10.1111/j.1477-9730.2006. 00397.x. [http | .pdf]

[1] Barrand, N.E. and Murray, T. (2006) ‘Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya.’ Arctic, Antarctic and Alpine Research, 38 (4), 489–498, doi: 10.1657/1523-0430(2006)38. [http | .pdf]