Recent publications
Article
Akerman, I, Kasaai, B, Bazarova, A, Sang, PB, Peiffer, I, Artufel, M, Derelle, R, Smith, G, Rodriguez-Martinez, M, Romano, M, Kinet, S, Tino, P, Theillet, C, Taylor, N, Ballester, B & Méchali, M 2020, 'A predictable conserved DNA base composition signature defines human core DNA replication origins', Nature Communications, vol. 11, no. 1, 4826 . https://doi.org/10.1038/s41467-020-18527-0
Gokhale, KM, Chandan, JS, Toulis, K, Gkoutos, G, Tino, P & Nirantharakumar, K 2020, 'Data extraction for epidemiological research (DExtER): a novel tool for automated clinical epidemiology studies', European Journal of Epidemiology. https://doi.org/10.1007/s10654-020-00677-6
Tino, P 2020, 'Dynamical systems as temporal feature spaces', Journal of Machine Learning Research, vol. 21, no. 44, 19-589, pp. 1-42. <http://jmlr.org/papers/v21/19-589.html>
Pfannschmidt, L, Jacob, J, Hinder, F, Biehl, M, Tino, P & Hammer, B 2020, 'Feature relevance determination for ordinal regression in the context of feature redundancies and privileged information', Neurocomputing. https://doi.org/10.1016/j.neucom.2019.12.133
Tang, F, Fan, M & Tino, P 2020, 'Generalized Learning Riemannian Space Quantization: a Case Study on Riemannian Manifold of SPD Matrices', IEEE Transactions on Neural Networks and Learning Systems.
Alzheimer’s Disease Neuroimaging Initiative, Giorgio, J, Landau, S, Jagust, W, Tino, P & Kourtzi, Z 2020, 'Modelling prognostic trajectories of cognitive decline due to Alzheimer's disease', NeuroImage: Clinical, vol. 26, 102199, pp. 1-14. https://doi.org/10.1016/j.nicl.2020.102199
Pauli, R, Tino, P, Rogers, JC, Baker, R, Clanton, R, Birch, P, Brown, A, Daniel, G, Ferreira, L, Grisley, L, Kohls, G, Baumann, S, Bernhard, A, Martinelli, A, Ackermann, K, Lazaratou, H, Tsiakoulia, F, Bali, P, Oldenhof, H, Jansen, L, Smaragdi, A, Gonzalez-Madruga, K, Gonzalez-Torres, MA, González de Artaza-Lavesa, M, Steppan, M, Vriends, N, Bigorra, A, Siklósi, R, Ghosh, S, Bunte, K, Dochnal, R, Hervas, A, Stadler, C, Fernández-Rivas, A, Fairchild, G, Popma, A, Dikeos, D, Konrad, K, Herpertz-Dahlmann, B, Freitag, CM, Rotshtein, P & De Brito, S 2020, 'Positive and negative parenting in conduct disorder with high versus low levels of callous-unemotional traits', Development and Psychopathology, pp. 1-12. https://doi.org/10.1017/S0954579420000279
Chong, SY, Tino, P & He, J 2019, 'Coevolutionary systems and PageRank', Artificial Intelligence, vol. 277, 103164. https://doi.org/10.1016/j.artint.2019.103164
Karlaftis, VM, Giorgio, J, Vértes, PE, Wang, R, Shen, Y, Tino, P, Welchman, A & Kourtzi, Z 2019, 'Multimodal imaging of brain connectivity reveals predictors of individual decision strategy in statistical learning', Nature Human Behaviour, vol. 3, no. 3, pp. 297-307. https://doi.org/10.1038/s41562-018-0503-4
Tino, P 2018, 'Asymptotic Fisher Memory of Randomized Linear Symmetric Echo State Networks', Neurocomputing, vol. 298, pp. 4-8. https://doi.org/10.1016/j.neucom.2017.11.076
Bunte, K, Smith, D, Chappell, MJ, Hassan-Smith, Z, Tomlinson, J, Arlt, W & Tino, P 2018, 'Learning pharmacokinetic models for in vivo glucocorticoid activation', Journal of Theoretical Biology, vol. 455, pp. 222-231. https://doi.org/10.1016/j.jtbi.2018.07.025
Rupawala, M, Dehghani, H, Lucas, SJE, Tino, P & Cruse, D 2018, 'Shining a Light on Awareness: A Review of Functional Near-Infrared Spectroscopy for Prolonged Disorders of Consciousness', Frontiers in neurology, vol. 9, 350. https://doi.org/10.3389/fneur.2018.00350
Conference contribution
Friess, S, Tino, P, Menzel, S, Sendhoff, B & Yao, X 2020, Improving sampling in evolution strategies through mixture-based distributions built from past problem instances. in Parallel Problem Solving from Nature – PPSN XVI. Lecture Notes in Computer Science, vol. 12269, Springer, pp. 583-596, Sixteenth International Conference on Parallel Problem Solving from Nature (PPSN XVI), 2020., Leiden, Netherlands, 5/09/20. https://doi.org/10.1007/978-3-030-58112-1_40
Friess, S, Tino, P, Menzel, S, Sendhoff, B & Yao, X 2020, Representing experience in continuous evolutionary optimisation through problem-tailored search operators. in 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1-7, 2020 IEEE Congress on Evolutionary Computation (IEE CEC 2020), Glasgow, United Kingdom, 19/07/20. https://doi.org/10.1109/CEC48606.2020.9185687
Friess, S, Tino, P, Menzel, S, Sendhoff, B & Yao, X 2019, Learning Transferable Variation Operators in a Continuous Genetic Algorithm. in 2019 IEEE Symposium Series on Computational Intelligence (SSCI 2019)., 9002976, Institute of Electrical and Electronics Engineers (IEEE), pp. 2027-2033, 2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019, Xiamen, China, 6/12/19. https://doi.org/10.1109/SSCI44817.2019.9002976
View all publications in research portal