Science and Engineering of Materials MRes

Postgraduate combined research and teaching degree programme Science and Engineering of Materials MRes:

This EPSRC-sponsored programme comprises a major research project, which can be based in the University or in industry, and six taught modules, four compulsory and two optional.

EU Referendum

Answering your questions and concerns about the outcome of the EU referendum.

This EPSRC-sponsored programme can be taken on a full- or part-time basis. The programme comprises a major research project, which can be based in the University or in industry, and six taught modules, four compulsory and two optional.

We recommend that you start the course at the beginning of the academic year. However, if your background is in Materials Science, then you may start at any time of the year.

Related links 

Why study this course

Metallurgy and Materials and the IRC in Materials Processing together make up the largest centre for materials research in the UK. Our Research School comprises more than 20 full-time academic staff in addition to 30 honorary and visiting staff, 30 research fellows and close to 150 postgraduate students.

Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. Research is funded from a wide range of sources including the UK research councils, the EU and a cross-section of UK and overseas industry. Our research income is around £4 million per annum.

Most of our research projects involve active collaboration with industrial partners.


The four compulsory modules are:

  • Introduction to Materials*
  • Effective Project Management
  • Materials Characterisation
  • Communication Skills

You may choose two (or three*) options from:

  • Electron Microscopy
  • Biomaterials
  • Design Against Failure
  • Functional Materials
  • Intermetallics, Metal Matrix Composites and Ceramic Matrix Composites
  • Materials for Sustainable Environmental Technologies
  • Net Shape Manufacturing
  • Polymer Science and Soft Matter
  • Sensors and Composites
  • Surface Engineering

*If you have a background in Materials Science, you will take an additional option in place of Introduction to Materials.

Please note: The modules listed on the website for this programme are regularly reviewed to keep them up-to-date, which may require changes to module content. Also, key members of staff may leave the University and this necessitates a review of the modules that are offered. Where the module is no longer available we will let you know as soon as we can and help you make other choices.

Fees and funding

Distinguished Alumni Scholarship scheme

We are offering awards of £2,000 per scholarship to outstanding alumni wishing to undertake Masters study at the University during 2017-18.

Tuition Fees 2017/18 academic year:

  • £4,195 UK/EU students, full-time
  • £2,098 UK/EU students, part-time
  • £19,710 International students, full-time

Learn more about fees and funding.

Scholarships and studentships
Sources of funding may include the EPSRC, the BBSRC, the Knowledge Transfer Partnership (KTP), the European Union and industrial funding for UK and EU students.International students can often gain funding through overseas research scholarships, Commonwealth scholarships or their home government.
For further information contact the School directly or email

Entry requirements

A 2:1 Honours degree in a physical science or engineering subject.
Learn more about entry requirements.

International students
We accept a range of qualifications from different countries – learn more about international entry requirements. Standard English language requirements apply.

How to apply

Learn more about applying

Apply now

When clicking on the Apply Now button you will be directed to an application specifically designed for the programme you wish to apply for where you will create an account with the University application system and submit your application and supporting documents online. Further information regarding how to apply online can be found on the How to apply pages

Apply now

Examples of MRes in the Science and Engineering of Materials Research Projects

  • Reliability of optical fibre sensors for smart structures – S. N. Kukureka
  • Mechanical reliability of optical fibres for telecommunications – S. N. Kukureka
  • Chemistry and stability of localised corrosion sites – A. J. Davenport
  • High Resolution Synchrotron X-ray studies of pitting corrosion – A. J. Davenport, T. Rayment
  • Simultaneous thermal (DSC), spectral (FTIR) and physical (TMA) analyses of polymers – G. Fernando
  • Design, fabrication and evaluation of a novel fibre optic acoustic emission sensor – G. Fernando
  • Detection (and modelling) of moisture ingress in composites using optical fibre sensors – G. Fernando
  • Self-sensing glass fibre composites: Chemical process monitoring – G. Fernando
  • Self-sensing glass fibre composites: Damage detection – G. Fernando
  • Characterisation of photo-curable dental resins using a non-contact probe – G. Fernando

Additional projects may be available; contact academic staff in Metallurgy and Materials, Chemistry, Mechanical Engineering, or Chemical Engineering.

Research overview

Researcher at computer screen Our research facilities for materials preparation range from vacuum melting and casting for special alloys, through crystal growth equipment for rare-earth and very reactive alloys to melt-spinning facilities for the production of rapidly cooled alloys, atomizers to make metal powders and laser ablation equipment for the production of multilayer and superconducting materials.

Surface engineering facilities allow plasma nitriding, boriding, carburising and other surface treatments to be carried out on a range of alloys under controlled conditions, and we have recently installed plasma-spray equipment to produce coatings. There are polymer-processing laboratories and the IRC possesses a large plasma-melting furnace, HIP equipment, direct laser fabrication, a laboratory for the hydrothermal synthesis and colloidal processing of ceramics, and the ?8 million Net Shape Manufacturing Laboratory.

The physical techniques laboratory contains a range of equipment for processes including VSM, dilatometry, differential scanning calorimetry, electrical resistivity and density measurements. The world-class mechanical testing laboratories consist of approximately 30 facilities for fracture and fatigue studies over the temperature range of -196 to 1,500?C, and are accredited by Rolls-Royce for the acquisition and interpretation of data.

Seven creep machines from Nuclear Electric form the basis of a creep-testing laboratory, and thermogravimetric balances, also donated by Nuclear Electric, allow sensitive oxidation measurements to be made at temperatures up to 1,400?C. There is specialised mechanical testing for polymers and foams, at strain rates from creep to impact. X-ray diffraction facilities provide essential back-up to the crystal growth and alloy preparation activities.

Microstructural assessment is well provided for, with a wide range of optical microscopes and quantitative image analysis, and extensive electron microscope facilities. The Electron Microscope Centre provides a service to all schools in the University, as well as to the Midlands region. The five SEMs include

  • a JEOL 7000F with WDX, EDX and EBSD;
  • an FEI FEG ESEM with cryo and heating (1500?C) stages.

The TEMs include

  • a 200 kV FEI Tecnai F20 FEG(S)TEM with PEELS, EDX and HAADF.

A scanning Auger facility with an X-ray photo-electric spectrometer (XPS) is available for a wide range of surface studies and we also have an atomic force microscope.

The new hydrogen technology laboratory has a range of equipment to characterize the properties of materials in hydrogen. This includes two constant pressure Thermogravimetric Analysers, and a volumetric PCT system to measure the uptake and sorption kinetics of hydrogen storage materials.

A recent addition has been the Netzch differential scanning calorimeter (DSC) with simultaneous thermal analysis (STA). Nicolet Magna-IR infrared and Raman spectrometers are being used to study polymer and ceramic-type materials. Other novel analytical equipment in this category include simultaneous DSC and FTIR, DSC and non-contact thermo-mechanical analysis.

The Department has good facilities for the fabrication and characterization of optical fibre sensors including sensor systems for strain, temperature, vibration, acoustic emission and chemical sensing. The autoclave-based processing of advanced fibre reinforced composites is carried out in the Astro-Physics Department.

We have excellent workshop facilities and a large suite of networked PCs, housed in a computing laboratory provided by Corus, which supplements the extensive computer facilities in individual research groups.

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.