A team of Birmingham scientists including Professor Rob MacKenzie are taking part in the first scientific collaboration of its kind, where British and American scientists are trading skills and expertise and are using an unmanned robotic aircraft to gather high altitude atmospheric data.
On Friday 25 January NASA held an event at its Dryden Flight Research Center in Southern California to showcase a number of Earth science missions to study climate change and air pollution.
One of the NASA campaigns, the Airborne Tropical Tropopause Experiment (ATTREX), has a sister campaign just starting in the UK – the Natural Environment Research Council (NERC) CAST project: Coordinated Airborne Studies in the Tropics.
The aircraft, a NASA Global Hawk, originally developed for military missions, will explore the tropical tropopause layer, the region where the Earth’s air enters the stratosphere. This region is where pollutants and greenhouse gases are transported into and out of the atmosphere and can potentially influence our climate. The scientists will be studying these chemical and climate interactions, and will aim to discover how much of the gas moves up into storms, something we have very little knowledge of at present.
The science teams will programme the Global Hawk to fly into the most climate-sensitive and difficult to reach regions close to the equator, at an altitude of around 20km (approx. 65,600 feet) above the Earth – around twice the height of a commercial passenger jet.
UK lead scientist Dr Neil Harris from the University of Cambridge, said, ‘We are the first UK group to work with NASA using the Global Hawk as a science platform. The project will be very efficient in terms of sharing equipment, expertise and data, and we expect the results to answer some fundamental questions about how the movement of atmospheric pollutants can influence the Earth’s climate.’
The Birmingham team will provide a model to simulate the behaviour of very high, very cold, almost invisible clouds which are important in moderating the amount of water entering the ozone layer, which, in turn, is important because water in the stratosphere can destroy the protective ozone shield. The new “drone” robot aircraft provides new ways of probing the air as it moves towards the ozone layer, challenging the model simulations with unique observations. Jointly with Lancaster University the researchers are also developing software to convert the drone’s data stream into information for scientific decision-making in real-time, using novel pattern recognition techniques that do not need to “see” the whole data set before starting to extract patterns.