Chakrabarti Group Publications

Recent publications

Archive

  • A. B. Rao, J. Shaw, A. Neophytou, D. Morphew, F. Sciortino, R. L. Johnston and D. Chakrabarti,
    ACS Nano 14, 5348 (2020).
    Leveraging Hierarchical Self-Assembly Pathways for Realizing Colloidal Photonic Crystals
  • Z. Ou, B. Luo, A. Neophytou, D. Chakrabarti and Q. Chen, Frontiers of Nanoscience 13, 61 (2019).
    Synthesis and Self-Assembly of Janus and Triblock Patchy Particles
  • D. Morphew and D. Chakrabarti, Nanoscale 10, 13875 (2018).
    Programming hierarchical self-assembly of colloids: matching stability and accessibility
  • D. Morphew, J. Shaw, C. Avins and D. Chakrabarti, ACS Nano 12, 2355 (2018).
    Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules
  • D. Morphew and D. Chakrabarti, Curr. Opin. Colloid Interface Sci. 30, 70 (2017).
    Clusters of Anisotropic Colloidal Particles: from Colloidal Molecules to Supracolloidal Structures
  • D. Morphew and D. Chakrabarti, Soft Matter 12, 9633 (2016).
    Supracolloidal reconfigurable polyhedra via hierarchical self-assembly
  • J. Hernández-Rojas, D. Chakrabarti and D. J. Wales, Phys. Chem. Chem. Phys. 18, 26579 (2016).
    Self-assembly of colloidal magnetic particles: energy landscapes and structural transitions
  • D. Morphew and D. Chakrabarti, Nanoscale 7, 8343 (2015).
    Hierarchical self-assembly of colloidal magnetic particles into reconfigurable spherical structures
  • K. H. Sutherland-Cash, D. J. Wales, and D. Chakrabarti, Chem. Phys. Lett. 625, 1 (2015).
    Free energy basin-hopping
  • S. N. Fejer, D. Chakrabarti, H. Kusumaatmaja, and D. J. Wales, Nanoscale 6, 9448 (2014).
    Design principles for Bernal spirals and helices with tunable pitch
  • D. Chakrabarti, H. Kusumaatmaja, V. Ruehle, and D. J. Wales, Phys. Chem. Chem. Phys. 16, 5014 (2014).
    Exploring Energy Landscapes: From Molecular to Mesoscopic Systems
    Perspective article and featured on the cover
  • V. Ruehle, H. Kusumaatmaja, D. Chakrabarti, and D. J. Wales, J. Chem. Theory Comput. 9, 4026 (2013).
    Exploring Energy Landscapes: Metrics, Pathways, and Normal-Mode Analysis for Rigid-Body Molecules
  • S. W. Olesen, S. N. Fejer, D. Chakrabarti, and D. J. Wales, RSC Advances 3, 12905 (2013).
    A left-handed building block self-assembles into right- and left-handed helices
  • C. J. Forman, S. N. Fejer, D. Chakrabarti, P. D. Barker, and D. J. Wales, J. Phys. Chem. B 117, 7918 (2013).
    Local frustration determines molecular and macroscopic helix structures
    Featured on the cover.
  • J. D. Farrell, C. Lines, J. J. Shepherd, D. Chakrabarti, M. A. Miller, and D. J. Wales, Soft Matter 9, 5407 (2013).
    Energy landscapes, structural topologies and rearrangement mechanisms in clusters of dipolar particles
  • J. W. R. Morgan, D. Chakrabarti, N. Dorsaz, and D. J. Wales, ACS Nano 7, 1246 (2013).
    Designing a Bernal spiral from patchy colloids
  • D. Chakrabarti, T. S. Totton, M. Kraft, and D. J. Wales, Phys. Chem. Chem. Phys. 13, 21362 (2011).
    A survey of the potential energy surface for the (benzene)13 cluster
  • D. Chakrabarti, S.N. Fejer, and D.J. Wales, in "Computational Nanoscience", edited by E. Bichoutskaia, Royal Society of Chemistry, 58 (2011).
    Self-Assembly of Nanoclusters: An Energy Landscape Perspective
  • S.N. Fejer, D. Chakrabarti, and D.J. Wales, Soft Matter, 7, 3553 (2011).
    Self-Assembly of Anisotropic Particles
  • D. Chakrabarti and D.J. Wales, Soft Matter, 7, 2325 (2011).
    Coupled linear and rotary motion in supramolecular helix handedness inversion
    Identified as a Soft Matter Hot Article.
  • T. S. Totton, D. Chakrabarti, A. J. Misquitta, M. Sander, D. J. Wales, and M. Kraft, Combust. Flame 157, 909 (2010).
    Modelling the internal structure of nascent soot particles
  • S. N. Fejer, D. Chakrabarti, and D. J. Wales, ACS Nano 4, 219 (2010).
    Emergent complexity from simple anisotropic building blocks: Shells, tubes and spirals
  • D. Chakrabarti, S. N. Fejer, and D. J. Wales, Proc. Natl. Acad. Sci. USA 106, 20164 (2009).
    Rational design of helical architectures
    Featured in "In This Issue" in PNAS.
  • D. Chakrabarti and D. J. Wales, Phys. Chem. Chem. Phys. 11, 1970 (2009).
    Simulations of rigid bodies in an angle-axis framework
  • D. Chakrabarti and B. Bagchi, Adv. Chem. Phys. 141, 249 (2009).
    Dynamics of thermotropic liquid crystals across the isotropic-nematic transition and their similarity with glassy relaxation in supercooled liquids
  • D. Chakrabarti and D. J. Wales, Phys. Rev. E 77, 051709 (2008).
    Energy landscape of a model discotic liquid crystal
  • D. Chakrabarti and D. J. Wales, Phys. Rev. Lett. 100, 127801 (2008).
    Tilted and helical columnar phases for an axially symmetric discoidal system
  • D. Chakrabarti and B. Bagchi, J. Phys. Chem. B (Feature Article) 111, 11646 (2007).
    Glassiness of thermotropic liquid crystals across the isotropic-nematic transition
  • B. Jana, D. Chakrabarti, and B. Bagchi, Phys. Rev. E 76, 011712 (2007).
    Glassy orientational dynamics of rodlike molecules near the isotropic-nematic transition
  • D. Chakrabarti, B. Jana, and B. Bagchi, Phys. Rev. E 75, 061703 (2007).
    Orientational relaxation in a discotic liquid crystal
  • D. Chakrabarti and B. Bagchi, J. Chem. Phys. 126, 204906 (2007).
    Comparative study of temperature dependent orientational relaxation in a model thermotropic liquid crystal and in a model supercooled liquid
  • S. E. Abraham, D. Chakrabarti, and B. Bagchi, J. Chem. Phys. 126, 074501 (2007).
    Energy landscape view of non-ideality in binary mixtures
  • D. Chakrabarti and B. Bagchi, Phys. Rev. E 74, 041704 (2006).
    Anisotropic translational diffusion in the nematic phase: Dynamical signature of the coupling between orientational and translational order in the energy landscape
  • S. Chakrabarty, D. Chakrabarti, and B. Bagchi, Phys. Rev. E 73, 061706 (2006).
    Power law relaxation and glassy dynamics in Lebwohl-Lasher model near the isotropic-nematic phase transition
  • D. Chakrabarti and B. Bagchi, Phys. Rev. Lett. 96, 187801 (2006).
    Decoupling phenomena in supercooled liquids: Signatures in the energy landscape
  • D. Chakrabarti and B. Bagchi, Proc. Natl. Acad. Sci. USA 103, 7217 (2006).
    Energy landscape view of phase transitions and slow dynamics in thermotropic liquid crystals
  • P. P. Jose, D. Chakrabarti, and B. Bagchi, Phys. Rev. E 73, 031705 (2006).
    Complete breakdown of the Debye model of rotational relaxation near the isotropic-nematic phase boundary: Effects of intermolecular correlations in orientational dynamics
  • D. Chakrabarti, P. P. Jose, S. Chakrabarty, and B. Bagchi, Phys. Rev. Lett. 95, 197801 (2005).
    Universal power law in the orientational relaxation in thermotropic liquid crystals
  • P. P. Jose, D. Chakrabarti, and B. Bagchi, Phys. Rev. E (Rapid Communication) 71, 030701 (2005).
    Anomalous glassy relaxation near the isotropic-nematic phase transition
  • D. Chakrabarti and B. Bagchi, J. Chem. Phys. 122, 014501 (2005).
    Frequency dependent heat capacity within a kinetic model of glassy dynamics
  • D. Chakrabarti and B. Bagchi, J. Chem. Phys. 120, 11678 (2004).
    Nonmonotonic temperature dependence of heat capacity through the glass transition within a kinetic model
  • D. Chakrabarti and B. Bagchi, J. Chem. Phys. 118, 7965 (2003).
    Waiting time distribution and nonexponential relaxation in single molecule spectroscopic studies: Realization of entropic bottleneck in a simple model