Recent publications
Article
Riley, R, Collins, G, Archer, L, Whittle, R, Legha, A, Kirton, L, Dhiman, P, Sadatsafavi, M, Adderley, N, Alderman, J, Martin, GP & Ensor, J 2025, 'A decomposition of Fisher’s information to inform sample size for developing or updating fair and precise clinical prediction models - Part 2: time-to-event outcomes', Diagnostic and Prognostic Research.
Davenport, C, Richter, A, Hillier, B, Scandrett, K, Agarwal, R, Baldwin, SW, Kale, AU, Alderman, J, Macdonald, T & Deeks, JJ 2025, 'Direct-to-consumer self-tests sold in the UK in 2023: cross sectional review of information on intended use, instructions for use, and post-test decision making', BMJ, vol. 390, e085546. https://doi.org/10.1136/bmj-2025-085546
Hillier, B, Deeks, JJ, Alderman, J, Kale, AU, Macdonald, T, Baldwin, SW, Scandrett, K, Agarwal, R, Richter, A & Davenport, C 2025, 'Direct-to-consumer self-tests sold in the UK in 2023: cross sectional review of regulation and evidence of performance', BMJ, vol. 390 , e085547. https://doi.org/10.1136/bmj-2025-085547
Whittle, R, Ensor, J, Archer, L, Collins, GS, Dhiman, P, Denniston, A, Alderman, J, Legha, A, van Smeden, M, Moons, KG, Cazier, J-B, Riley, RD & Snell, KIE 2025, 'Extended sample size calculations for evaluation of prediction models using a threshold for classification', BMC Medical Research Methodology, vol. 25, no. 1, 170. https://doi.org/10.1186/s12874-025-02592-4
Alderman, J, Riley, R, Parekh, D, Summers, C, Liu, X & Denniston, A 2025, 'Hidden risks of predictive models in healthcare', BMJ evidence-based medicine. https://doi.org/10.1136/bmjebm-2025-113730
Riley, RD, Ensor, J, Snell, KIE, Archer, L, Whittle, R, Dhiman, P, Alderman, J, Liu, X, Kirton, L, Manson-Whitton, J, van Smeden, M, Nirantharakumar, K, Denniston, AK, Van Calster, B & Collins, G 2025, 'Importance of sample size on the quality and utility of AI-based prediction models for healthcare', The Lancet Digital Health. https://doi.org/10.1016/j.landig.2025.01.013
Riley, RD, Collins, G, Kirton, L, Snell, KIE, Ensor, J, Whittle, R, Dhiman, P, van Smeden, M, Liu, X, Alderman, J, Nirantharakumar, K, Manson-Whitton, J, Westwood, AJ, Cazier, J-B, Moons, KGM, Martin, GP, Sperrin, M, Denniston, AK, Jr, FEH & Archer, L 2025, 'Uncertainty of risk estimates from clinical prediction models: rationale, challenges, and approaches', BMJ, vol. 388, e080749. https://doi.org/10.1136/bmj-2024-080749
Chotalia, M, Ali, M, Alderman, JE, Bansal, S, Patel, JM, Bangash, MN & Parekh, D 2023, 'Cardiovascular Subphenotypes in Acute Respiratory Distress Syndrome', Critical care medicine, vol. 51, no. 4, pp. 460-470. https://doi.org/10.1097/ccm.0000000000005751
Arora, A, Alderman, JE, Palmer, J, Ganapathi, S, Laws, E, McCradden, MD, Oakden-Rayner, L, Pfohl, SR, Ghassemi, M, Mckay, F, Treanor, D, Rostamzadeh, N, Mateen, BA, Gath, J, Adebajo, AO, Kuku, S, Matin, RN, Heller, K, Sapey, E, Sebire, NJ, Cole-Lewis, H, Calvert, M, Denniston, A & Liu, X 2023, 'The value of standards for health datasets in artificial intelligence-based applications', Nature Medicine, vol. 29, no. 11, pp. 2929-2938. https://doi.org/10.1038/s41591-023-02608-w
Editorial
Liu, X, Alderman, J & Laws, E 2024, 'A Global Health Data Divide', NEJM AI, vol. 1, no. 6. https://doi.org/10.1056/AIe2400388
Preprint
Riley, RD, Collins, GS, Archer, L, Whittle, R, Legha, A, Kirton, L, Dhiman, P, Sadatsafavi, M, Adderley, NJ, Alderman, J, Martin, GP & Ensor, J 2025 'A decomposition of Fisher's information to inform sample size for developing fair and precise clinical prediction models -- Part 2: time-to-event outcomes' arXiv. <https://arxiv.org/abs/2501.14482>
Whittle, R, Ensor, J, Archer, L, Collins, GS, Dhiman, P, Denniston, A, Alderman, J, Legha, A, van Smeden, M, Moons, KG, Cazier, J-B, Riley, RD & Snell, KIE 2024 'Extended sample size calculations for evaluation of prediction models using a threshold for classification' arXiv. https://doi.org/10.48550/arXiv.2406.19673
Review article
Laws, E, Charalambides, M, Vadera, S, Keller, E, Alderman, J, Blackboro, B, Hogg, J, Salisbury, T, Palmer, J, Calvert, M, Mackintosh, M, Matin, R, Sapey, E, Ordish, J, McCradden, M, Mateen, B, Gath, J, Adebajo, A, Kuku, S, Bradlow, W, Denniston, AK & Liu, X 2025, 'Diversity and inclusion within datasets in heart failure: A systematic review ', JACC: Advances, vol. 4, no. 3, 101610. https://doi.org/10.1016/j.jacadv.2025.101610
Alderman, JE, Palmer, J, Laws, E, McCradden, MD, Ordish, J, Ghassemi, M, Pfohl, SR, Rostamzadeh, N, Cole-Lewis, H, Glocker, B, Calvert, M, Pollard, TJ, Gill, J, Gath, J, Adebajo, A, Beng, J, Leung, CH, Kuku, S, Farmer, L-A, Matin, RN, Mateen, BA, McKay, F, Heller, K, Karthikesalingam, A, Treanor, D, Mackintosh, M, Oakden-Rayner, L, Pearson, R, Manrai, AK, Myles, P, Kumuthini, J, Kapacee, Z, Sebire, NJ, Nazer, LH, Seah, J, Akbari, A, Berman, L, Gichoya, JW, Righetto, L, Samuel, D, Wasswa, W, Charalambides, M, Arora, A, Pujari, S, Summers, C, Sapey, E, Wilkinson, S, Thakker, V, Denniston, A & Liu, X 2025, 'Tackling algorithmic bias and promoting transparency in health datasets: the STANDING Together consensus recommendations', The Lancet Digital Health, vol. 7, no. 1, pp. e64-e88. https://doi.org/10.1016/S2589-7500(24)00224-3
Alderman, J, Charalambides, M, Sachdeva, G, Laws, E, Palmer, J, Lee, E, Menon, V, Malik, Q, Vadera, S, Calvert, M, Ghassemi, M, McCradden, MD, Ordish, J, Mateen, B, Summers, C, Gath, J, Matin, RN, Denniston, AK & Liu, X 2024, 'Revealing transparency gaps in publicly available Covid-19 datasets used for medical artificial intelligence development: a systematic review', The Lancet Digital Health, vol. 6, no. 11, pp. e827-e847. https://doi.org/10.1016/S2589-7500(24)00146-8
View all publications in research portal