Recent publications
Article
Riley, RD, Collins, GS, Archer, L, Whittle, R, Legha, A, Kirton, L, Dhiman, P, Sadatsafavi, M, Adderley, NJ, Alderman, J, Martin, GP & Ensor, J 2025, 'A decomposition of Fisher’s information to inform sample size for developing or updating fair and precise clinical prediction models - Part 2: time-to-event outcomes', Diagnostic and Prognostic Research, vol. 9, no. 1, 33. https://doi.org/10.1186/s41512-025-00204-9
Davenport, C, Richter, A, Hillier, B, Scandrett, K, Agarwal, R, Baldwin, SW, Kale, AU, Alderman, J, Macdonald, T & Deeks, JJ 2025, 'Direct-to-consumer self-tests sold in the UK in 2023: cross sectional review of information on intended use, instructions for use, and post-test decision making', BMJ, vol. 390, e085546. https://doi.org/10.1136/bmj-2025-085546
Hillier, B, Deeks, JJ, Alderman, J, Kale, AU, Macdonald, T, Baldwin, SW, Scandrett, K, Agarwal, R, Richter, A & Davenport, C 2025, 'Direct-to-consumer self-tests sold in the UK in 2023: cross sectional review of regulation and evidence of performance', BMJ, vol. 390 , e085547. https://doi.org/10.1136/bmj-2025-085547
Whittle, R, Ensor, J, Archer, L, Collins, GS, Dhiman, P, Denniston, A, Alderman, J, Legha, A, van Smeden, M, Moons, KG, Cazier, J-B, Riley, RD & Snell, KIE 2025, 'Extended sample size calculations for evaluation of prediction models using a threshold for classification', BMC Medical Research Methodology, vol. 25, no. 1, 170. https://doi.org/10.1186/s12874-025-02592-4
Alderman, J, Riley, R, Parekh, D, Summers, C, Liu, X & Denniston, A 2025, 'Hidden risks of predictive models in healthcare', BMJ evidence-based medicine. https://doi.org/10.1136/bmjebm-2025-113730
Riley, RD, Ensor, J, Snell, KIE, Archer, L, Whittle, R, Dhiman, P, Alderman, J, Liu, X, Kirton, L, Manson-Whitton, J, van Smeden, M, Nirantharakumar, K, Denniston, AK, Van Calster, B & Collins, G 2025, 'Importance of sample size on the quality and utility of AI-based prediction models for healthcare', The Lancet Digital Health. https://doi.org/10.1016/j.landig.2025.01.013
Riley, RD, Collins, G, Kirton, L, Snell, KIE, Ensor, J, Whittle, R, Dhiman, P, van Smeden, M, Liu, X, Alderman, J, Nirantharakumar, K, Manson-Whitton, J, Westwood, AJ, Cazier, J-B, Moons, KGM, Martin, GP, Sperrin, M, Denniston, AK, Jr, FEH & Archer, L 2025, 'Uncertainty of risk estimates from clinical prediction models: rationale, challenges, and approaches', BMJ, vol. 388, e080749. https://doi.org/10.1136/bmj-2024-080749
Comment/debate
Laws, E, Palmer, J, Alderman, J, Sharma, O, Ngai, V, Salisbury, T, Hussain, G, Ahmed, S, Sachdeva, G, Vadera, S, Mateen, B, Matin, R, Kuku, S, Calvert, M, Gath, J, Treanor, D, McCradden, M, Mackintosh, M, Gichoya, J, Trivedi, H, Denniston, AK & Liu, X 2025, 'Corrigendum to “Diversity, inclusivity and traceability of mammography datasets used in development of Artificial Intelligence technologies: a systematic review” [Clin Imaging 118 (2025) 110369]', Clinical Imaging, vol. 125, 110541. https://doi.org/10.1016/j.clinimag.2025.110541
Evans, TD, Ahmad, O, Alderman, JE, Bailey, G, Bannister, P, Barlow, N, Davison, N, Isaac, A, Kale, AU, MacDonald, T, Malik, Q, Shelmerdine, SC, Hogg, HDJ & Denniston, AK 2025, 'The role of procurement frameworks in responsible AI innovation in the National Health Service: a multi-stakeholder perspective', Frontiers in Health Services, vol. 5, 1608087. https://doi.org/10.3389/frhs.2025.1608087
Editorial
Liu, X, Alderman, J & Laws, E 2024, 'A Global Health Data Divide', NEJM AI, vol. 1, no. 6. https://doi.org/10.1056/AIe2400388
Preprint
Riley, RD, Collins, GS, Archer, L, Whittle, R, Legha, A, Kirton, L, Dhiman, P, Sadatsafavi, M, Adderley, NJ, Alderman, J, Martin, GP & Ensor, J 2025 'A decomposition of Fisher's information to inform sample size for developing fair and precise clinical prediction models -- Part 2: time-to-event outcomes' arXiv. <https://arxiv.org/abs/2501.14482>
Whittle, R, Ensor, J, Archer, L, Collins, GS, Dhiman, P, Denniston, A, Alderman, J, Legha, A, van Smeden, M, Moons, KG, Cazier, J-B, Riley, RD & Snell, KIE 2024 'Extended sample size calculations for evaluation of prediction models using a threshold for classification' arXiv. https://doi.org/10.48550/arXiv.2406.19673
Review article
Laws, E, Charalambides, M, Vadera, S, Keller, E, Alderman, J, Blackboro, B, Hogg, J, Salisbury, T, Palmer, J, Calvert, M, Mackintosh, M, Matin, R, Sapey, E, Ordish, J, McCradden, M, Mateen, B, Gath, J, Adebajo, A, Kuku, S, Bradlow, W, Denniston, AK & Liu, X 2025, 'Diversity and inclusion within datasets in heart failure: A systematic review ', JACC: Advances, vol. 4, no. 3, 101610. https://doi.org/10.1016/j.jacadv.2025.101610
Laws, E, Palmer, J, Alderman, J, Sharma, O, Ngai, V, Salisbury, T, Hussain, G, Ahmed, S, Sachdeva, G, Vadera, S, Mateen, B, Matin, R, Kuku, S, Calvert, M, Gath, J, Treanor, D, McCradden, M, Mackintosh, M, Gichoya, J, Trivedi, H, Denniston, AK & Liu, X 2025, 'Diversity, inclusivity and traceability of mammography datasets used in development of Artificial Intelligence technologies: a systematic review', Clinical Imaging, vol. 118, 110369. https://doi.org/10.1016/j.clinimag.2024.110369
Alderman, JE, Palmer, J, Laws, E, McCradden, MD, Ordish, J, Ghassemi, M, Pfohl, SR, Rostamzadeh, N, Cole-Lewis, H, Glocker, B, Calvert, M, Pollard, TJ, Gill, J, Gath, J, Adebajo, A, Beng, J, Leung, CH, Kuku, S, Farmer, L-A, Matin, RN, Mateen, BA, McKay, F, Heller, K, Karthikesalingam, A, Treanor, D, Mackintosh, M, Oakden-Rayner, L, Pearson, R, Manrai, AK, Myles, P, Kumuthini, J, Kapacee, Z, Sebire, NJ, Nazer, LH, Seah, J, Akbari, A, Berman, L, Gichoya, JW, Righetto, L, Samuel, D, Wasswa, W, Charalambides, M, Arora, A, Pujari, S, Summers, C, Sapey, E, Wilkinson, S, Thakker, V, Denniston, A & Liu, X 2025, 'Tackling algorithmic bias and promoting transparency in health datasets: the STANDING Together consensus recommendations', The Lancet Digital Health, vol. 7, no. 1, pp. e64-e88. https://doi.org/10.1016/S2589-7500(24)00224-3
View all publications in research portal