Today, the Faraday Institution announced up to £42 million in new government funding to four UK-based consortia to conduct application-inspired research aimed at overcoming battery challenges to accelerate the electric vehicle (EV) revolution.
If successful, this research will put the UK on the map as being at the forefront of battery technology worldwide. It has the potential to radically increase the speed with which we are able to make the move to electric vehicles, as well as the speed with which we can decarbonize our energy supply, with obvious benefits to the environment.
The Faraday Institution is the UK’s independent national battery research institute, and was established as part of the government’s £246 million investment in battery technology through the Industrial Strategy. Its formation was announced in October 2017 by the Business Secretary Greg Clark.
The Faraday Institution’s goal is to make the UK the go-to place and world leader for battery technology research and it has a clear mission to ensure the UK is well placed to take advantage of the future economic opportunities from this emerging technology.
Business Minister Richard Harrington said, “With 200,000 electric vehicles set to be on UK roads by the end of 2018 and worldwide sales growing by 45 per cent in 2016, investment in car batteries is a massive opportunity for Britain and one that is estimated to be worth £5 billion by 2025.
“Through our flagship Industrial Strategy and its Future of Mobility and Clean Growth Grand Challenges, we are committed to making Britain the ‘go-to’ destination for the development and deployment of this game-changing technology.
“Government investment, through the Faraday Institution, in the projects announced today will deliver valuable research that will help us seize the economic opportunities presented by battery technology and our transition to a low-carbon economy.”
The topics for the four projects were chosen in consultation with industry, who will partner closely with each of them. This unique collaboration will help to ensure that the research is producing findings and solutions that meet the needs of business. In addition, industrial partners will contribute a total of £4.6 million in in-kind support to the following four projects:
Recycling and reuse – A project led by the University of Birmingham, including seven other academic institutions and 14 industrial partners, will determine the ways in which spent lithium batteries can be recycled. With the aim to recycle 100% of the battery, the project will look how to reuse the batteries and their materials, to make better use of global resources, and ultimately increase the impact of batteries in improving air quality and decarbonisation. With Birmingham, university partners include the University of Leicester, Newcastle University, Cardiff University, University of Liverpool, Oxford Brookes University, University of Edinburgh, and the Science and Facilities Technology Council.
Extending battery life – Led by the University of Cambridge with nine other university and 10 industry partners, this project will examine how environmental and internal battery stresses (such as high temperatures, charging and discharging rates) damage electric vehicle (EV) batteries over time. Results will include the optimization of battery materials and cells to extend battery life (and hence EV range), reduce battery costs, and enhance battery safety. With Cambridge, university partners include University of Glasgow, University College London, Newcastle University, Imperial College London, University of Strathclyde, University of Manchester, University of Southampton, University of Liverpool and Warwick Manufacturing Group.
Battery system modelling – Imperial College London (ICL) will lead a consortium of six other university and 17 industry partners to equip industry and academia with new software tools to understand and predict battery performance, by connecting understanding of battery materials at the atomic level all the way up to an assembled battery pack. The goal is to create accurate models for use by the automotive industry to extend lifetime and performance, especially at low temperatures. With ICL, university partners include University of Southampton, Warwick Manufacturing Group, University of Oxford, Lancaster University, University of Bath, and University College London.
Next generation solid state batteries – The University of Oxford will lead an effort with six other university partners and nine industrial partners to break down the barriers that are preventing the progression to market of solid-state batteries, that should be lighter and safer, meaning cost savings and less reliance on cooling systems. The ambition of this project is to demonstrate the feasibility of a solid state battery with performance superior to Li-ion in EV applications. With Oxford, university partners will include the University of Liverpool, University of Glasgow, University of Strathclyde, University of Cambridge, University College London, and the University of St. Andrews.
Dr Paul Anderson from the University of Birmingham’s School of Chemistry, said: ‘The decarbonisation of our energy system and, in particular automotive transport, is one of the great technological challenges of our time. Never before has there been an opportunity to embed the circular economy in such a major technological change right from the outset, and this is what the ReLiB project (Recycling Lithium ion batteries) is designed to achieve.’
For more information about the University of Birmingham’s project visit ReLiB
For more information on The Faraday Institution
The Faraday Institution is the UK’s independent, national institute for electrochemical energy storage science and technology, supporting research, training, and analysis. Bringing together expertise from universities and industry, The Faraday Institution endeavours to make the UK the go-to place for the research of the development, manufacture and production of new electrical storage technologies for both the automotive and the wider relevant sectors.
The first phase of the Faraday Institution is funded by the Engineering and Physical Sciences Research Council (EPSRC) through the government’s Industrial Strategy Challenge Fund (ISCF). Headquartered at the Harwell Science and Innovation Campus, the Faraday Institution is registered charity with an independent board of trustees.
Follow on Twitter.
The Industrial Strategy Challenge Fund (ISCF) builds on the UK's world-class research base and delivers the science that business needs to transform existing industries and create new ones. It accelerates commercial exploitation of the most exciting technologies the UK has to offer the world to ensure that scientific investment truly delivers economic impact, jobs and growth right across the country. The ISCF is delivered by InnovateUK and Research Councils UK (RCUK), and eventually UK Research and Innovation, the single voice for the UK's research and innovation landscape.
The 'Faraday Battery Challenge' is to develop and manufacture batteries for the electrification of vehicles - £246 million over four years - to help UK businesses seize the opportunities presented by the move to a low carbon economy. The challenge will be split into three elements: research, innovation, and scale-up. It is among the first of six investment areas announced by the government to be funded through the Industrial Strategy Challenge Fund.